P

~ PRODUCT 359
BASIC INTERPRETER
Design Specification

Personal Computer Division

- June 30, 1980

Revisgsion 3.0

Revision 3.0

A R

Product 359 BASIC Interpreter 30JUN 80 e

v
Change Status

page level page level page level
i 3.0 41 3.0 81 3.0
2 3.0 42 3.0 82 3.0
3 3.0 43 3.0 83 3.0
4 3.0 44 3.0 84 3.0
5 3.0 45 3.0 85 3.0
1) 3.0 464 3.0 B6 3.0
7 3.0 47 3.0 87 3.0
8 3.0 48 3.0 88 3.0
? 3.0 49 3.0 89 3.0
i0 3.0 S0 3.0 20 3.0
i1 3.0 51 3.0 21 3.0
i2 3.0 52 3.0 92 3.0
13 3.0 53 3.0 93 3.0
i4 3.0 54 3.0 4 3.0
15 3.0 55 3.0 35 3.0
14 3.0 56 3.0 4 3.0
17 3.0 57 3.0 37 3.0
18 3.0 58 3.0 98 3.0
19 3.0 59 3.0 39 3.0
20 3.0 &0 3.0 100 3.0 -
21 3.0 61 3.0 101 3.0
22 3.0 &2 3.0 102 3.0 e
23 3.0 &3 3.0 103 3.0 ?
24 3.0 &4 3.0 104 3.0 &
23 3.0 65 3.0 105 3.0
26 3.0 bé 3.0 106 3.0
27 3.0 &7 3.0 107 3.0
28 3.0 68 3.0 108 3.0
29 3.0 &9 3.0 109 3.0
30 3.0 70 3.0 110 3.0
31 3.0 71 3.0 111 3.0
32 3.0 72 3.0 112 3.0
33 3.0 73 3.0

34 3.0 74 3.0

35 3.0 75 3.0

36 3.0 76 3.0

37 3.0 77 3.0

38 3.0 78 3.0

39 3.0 79 3.0

40 3.0 80 3.0

. Revision 3.0

Product 359 BASIC Interpretér 30JUN 80

Table of Caontents

0 Introduction i
1.1 Purpose 1
1.2 Scope i
2.0 Applicable Documents 2
2.0 General Description 3
3.1 Use Of System Resources 3
3.1.1 ROM Usage 3
3.1.2 GROM Usage 7
3.1.3 CPU RAM Usage ?
3.1.4 VDP RAM Usage i1
3.1.5 Expansion RAM Usage 13
4.0 Interpreter Phases 15
4.1 Editing 15
4.1.1 Input 15
4.1.1.1 Line Editing 17
4. 1.2 CRUNCH g 17
4.1.2.1 Specially crunched language elements 18
4.1.2.2 Crunching multi-statement lines i9
4.1.3 Program Image 20
4.1.3.1 VDP-RAM Program Editing 22
4.1.3.2 Expansion Memory Program Edltlng 23
4.1.4 Auto-num 24
4.1.5 List : 25
4.1.4 Resequence 25
4.2 Prescan 26
4. 2.1 Symbol Table : 26
4. 2.2 Subprogram’s Symbol Tables 28
4.2.3 Subprogram Name Symbol Table 29
4.3 Execution 33
4.3.1 EXEC 23
4.3.1.1 Statements 34,
4.3.2 PARSE 35
4.3.2.1 Precedence 36
4.3. 2.2 NUDs and LEDs 36
4.3.2. 3 CONTINUE , 37
4.3.2.4 Multi-statement Lines’ Execution 37
4.3.3 Data Structures 38
4.3.3.1 Value Stack 38
4.3.3.2 String Space 42
4.3.4 Math Package 47
4.3.5 String Package 48
4.3.6 BASIC Statements 49
4.3.6.1 Input/Output 49
4.3.6.1.1 Screen / Keyboard 50
Print Statement 50
Display Statement 51
Using clause 52
Input Statement 53
Linput Statement 56
Accept Statement o6
4.3.6.1.2 Device / F11e 57
Peripheral Access Block Definition 57

Revision 3.0

Product 359 BASIC Interpreter

30JUN 80

BASIC PAB Additions 59

I/0 Operations &0

OPEN &0

CLOSE 41

oLD a1

SAVE 62

MERGE &3

4.3.6.1.3 READ / DATA and RESTORE 63

4.3. 6.2 Assignment 64
4.3.6.2.1 Numerics 65
4.3.6.2.2 Strings bé
4.3.4.2.3 LET &7
4.3.6.3 Control Transfer 68
4.3 . 4.3.1 GOTO &9
4.3.6.3.2 GOSUB and RETURN 69
4.3.6.3.3 ON GOSUB and ON GOTO 70
4.3.6.3.4 FOR and NEXT 70
4.3.6.3.5 IF-THEN-ELSE 76
4.3.46.3.6 CALL 76
4.3.6.3.7 SUBEXIT and SUBEND 78
4.3.6.4 Program Termination 78
4.3.6.4.1 Normal 79
4.3.6.4.2 STOP and END 7%
4.3.6.4.3 Breakpoints 79

4.3.7 Functions and Operators 79
4.3.7.1 Arithmetic Operators 80
4.3.7.2 Arithmetic Functions 80
4.3.7.2. 4 Trignometric Functions 81
4.3.7.2.2 Other Arithmetic Functions 81
4.3.7.3 String Operators 82
4.3.7.3.1 Concatenation 82
4.3.7.4 String Functions 83
4.3.7.5 User~Defined Functions 8%
4.3.7.6 Relational Operators 87
4.3.7.7 Boolean QOperators 87
4.3.8 Error Handling 88
4.3.8.1 Detection 88
4.3.8.2 Reporting 89
4.3.8.3 Warnings 70
4.3.8.4 On Evrror Statement 21
4.3.8.5 On Warning Statement 21

5.0 Debugging Aids 23
5.1 Breakpoints 93
5.1.1 BREAK 73
5.1.2 UNBREAK ?4
5.1.3 On Break Statement 95
5.2 CONTINUE 29
3.3 Tracing ?5
5.3.1 TRACE ?6
3.3.2 UNTRACE ?6
6.0 Expansion Memory Support ?7
7.0 GPL Subprograms 98
7.1 CLEAR 98
7.2 S0UND 98

Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

7.3 COLOR 29
7.4 SCREEN 9
7.5 CHAR 99
7.6 KEY P9
7.7 VCHAR 100
7.8 HCHAR 100
7.9 GCHAR 100
7. 10 VERSION 101
7.11 Sprite—access subprograms 101
7.12 Speech-access subprograms 101
Appendix A - BASIC keyword table 103
Appendix B - GPL1O as a Debugging Aid 105
Appendix C - Special GPL XMLs 110

Revision 3.0

P

-

e TEETe

Product 359 BASIC Interpreter 30JUN 80

1.0 Introduction

This document contains the design details and documentation
of the Texas Instruments Product 359 BASIC language processor.

1.1 Purpose

The information provided in this document is intended to
provide a comprehensive documentation of how the Product 359
BASIC interpreter functions and is intended to be a document
which <can be referenced by persons maintaining, modifying or
using the interpreter on a very intimate level. Included are
descriptions of the use of memory, flow of the BASIC interpreter
and information deemed necessary to illuminate all facets of the
interpreter. This document was used as the design tool for the
implementation of the Product 359 BASIC interpreter,

1.2 Scope

The information contained herein 1is intended to be a
complete view of the interpreter for the implementers of the
BASIC as well as for persons maintaining the BASIC. It contains
all information about ¢the interpreter exept that information
which is contained in the documents named in section 2.

PAGE b Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

2.0 Applicable Documents

TI Extended BASIC Language Specification (June 30, 1980)
Product 359 BASIC Subprogram Specification (June 30, 1980)
Product 359 BASIC Sprite Specification (June 230, 1980)

Product 359 BASIC Interpreter Expansion RAM Peripheral
Support Software Specification (June 30, 1980)

Product 35% BASIC Language Implementation and Verification
Specification (June 30, 1980)

Home Computer BASIC Language Specification (April 14, 1979)

Specification of a Texas Instruments Standard for the BASIC
Language (June 9, 1978)

American National Standard for Minimal BASIC
(ANSI X3. 60-1978)

™S 9200 Microprocéssor Data Manual (Decembér 1976)

Graphics Programming Language Programmers Guide
(June 1, 1979)

Top Down Operator Precedence (Vaughan R. Pratt, ACM

Symposium on Principles of Programming Languages,
Boston, Mass.: Dctober 1973)

PAGE 2 s Revisian 3.0

Product 359 BASIC Interpreter 30JUN 80

3.0 General Description

This BASIC interpreter is to be contained in a Solid State
Software (TM) Module that <can be plugged into any 99/4 Home
Computer console. The interpreter is intended to be ANSI and TI
Standard compatible and is intended to provide access to some of
the wunique features of the 99/4‘s hardware, as well as the
expansion memory peripheral. The interpreter provides several
enhancements above the ANSI nucleus and 99/4 BASIC to access the
color graphiec, sprite, and sound capabilities of the 9/4
console as well as access to the expansion memory and speech
peripherals. This BASIC 1is considered to be an "enhanced" or
"extended" BASIC for the 99/4 console owner who needs a more
powerful BASIC language interpreter.

3.1 Use of System Resources

This section describes how ¢the interpreter utilizes the
memary rvesources of the 99/4 console, including the RAM and ROM
contained within the system, the GROM and ROM within the Product
359 Software Module and the expansion memory peripheral. The
interpreter, itself, resides in 12K of. ROM and 18K of GROM
within the Software Module. It also utilizes the floating-point
routines and some of the conversion routines contained within
the 99/4 console software. As much of the 99/4 BASIC code as
possible was translated into 9900 Assembly Language and put into
high—-speed ROM to increase the performance of the interpreter.

This BASIC utilizes the VDP RAM for program storage, symbol
table storage, Peripheral Access Blocks, string space. crunch
buffer, sprite—access blocks, screen and the floating-point
stack. When the expansion memory peripheral is attached to the
console, it is uvtilized for program storage and numeric variable
storage with the other structures remaining in the VDP RAM.

The CPU RAM is wused to maintain all of the necessary
pointers and temproary wvariables involved with editing,
prescanning and executing a BASIC program.

3.1.1 ROM Usaqge

ROM wtilization by the Product 359 BASIC interpreter
consists of two separate sections. First, and foremost, is the
ROM contained in the Software Module. The ROM contained,
therein, contains the bulk of the interpreter, including the
parser, rtun—time support routines, as well as some of the
speed-critical code of the editor and the static scanner. The
ROM code contained in the Software Module is distributed between
twenty-five separate assemblies. These assemblies are entitled
XML359, REF35%9, BASSUP, STRING, PARSE, NUD, FORNEXT, SCROLL,

PAGE 3 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

GREAD, GWRITE, DELREP, MVDN, MVUP, VGWITE, GVWITE, GETPUT, CNS,

TRINSIC, SPEED, CIF, SCAN, CRUNCH, CPT, GETNB and SUBPROG.

CRUNCH contains the input-line crunch routine with CPT being the
Character Property Table wused to interpret the incoming
characters and GETNB being the GET Non-Blank rtoutine used by
CRUNCH. PARSE, NUD and FORNEXT contain the bulk af the parser,

with NUD and FORNEXT existing solely because PARSE is a large
assembly. BASSUP includes some of the important run—time support
routines, like the symbol table searching routine, the array
subscripting routine and the variable assignment routine. STRING
contains the bulk of the system string handling facilities.

TRINSIC includes the trignometric functions, square-root
function, logarithm and exponential functions, and the
involution routine. SUBPROG contains the run—~time support for
calling and executing BASIC subprograms correctly. It also
contains the static-scan—-time code for resolving all subprogram
references. SCAN constains the 9900 support code for the static
scanner f£o improve it‘s speed. CNS contains the Convert Number
to String routine. It contains support for both free-format
conversion of numerics and fixed-format conversion of numerics
for use by the print/display-using-statements. CIF contains the
Convert Integer to Floating routine which converts a 2-byte
integer into its equivalent 8-byte radix 100 valvue. XML359
contains equates for routines in the 99/4 console code, equates
for memory locations used in the on-board CPU RAM and the two
XML tables wused by the interpreter. The remainder of the
assemblies contain special code to access the expansion memory
from GPL and assembly language.

Physically, the ROM within the Software Module resides in
the BK address space from address 26000 to 27FFF which is
predecoded at the GROM-port connector and 1is reserved for
"plug—in" software. In order to get 12K bytes in the 8K address
space special hardware is utilized by the Product 359 BASIC.

The software has been divided into 3, 4K blocks for the
purpose of fitting it into the Software Module. Block O resides
at address 26000 and 1is continuously enabled. Blocks 1 and 2
both reside at address >7000 with only one of the two blocks
enabled at a particular time.

PAGE 4 s Revision 3.0

Product 359 BASIC Interpreter 30JUN BO

Fm + R + 27FFF
4 1 i 1
{ Block ! { Block !
' 1 i ! 2 H
b H H !
H ! H i
Fm e + o ————— + 27000
Fo + 26FFF
[} []
i &
! Blaock |
| 0 !
P e + 26000
Figure 3.1.1.1

»

Upon powerup of BASIC block 1 is <the block enabled by the
software by writing to location >4000. In order for the software
to enable and use block 2 it must write to location }6002.

Write to >6002 - block 2 is enabled

e + S7FFF

t {
{ Block H
! 2 H
H H
{ H
Fo e ———— + 7000
Fmm i + >6FFF
]]
{ Block H
H o} !
F e e e + 26000
Figure 3.1.1.2
Once block 2 has been enabled, block 1 cannot be accessed. In

order for the software to enable and use block 1 it must write
to location >4000. When block 1 is enabled, block 2 cannot be
accessed.

PAGE S Revision 3.0

Product 3359 BASIC Interpreter 30JUN 80

Write to >»6000 - block 1 is enabled
(and on powerup)

Fmm—————— + D7FFF
{ Block i
H i H
o e e + 27000
o ——— + D&FFF
1 1
1]
! Block !
! 0 !
H !
{ {
Fm e ————— + 246000

Figure 3.1.1.3
%

As can be seen, software in block 1 cannot access software
in block 2 and vice versa. For this reason, the Convert. Number
to String (CNS) routine and the scientific intrinsic functions
and CRUNCH have been placed into block 2 and are only invoked by
code in block O. CNS, CRUNCH and the intrinsic #functions were
chosen because they are called in relatively few places. they
invoke no additional routines and the routines, themselves, are
relatively large, allowing them to fill block 2.

In order to put together all of the ROM code for the
Product 359 BASIC, each of the separate modules uf the system
must be included in two separate link—edits. The modules
contained in the fist link—-edit include all of +the modules
separated as shown below:

Block O at 26000

XML359 - XML tabkles and equates

REF359 - linkage to console

CPT — Character Property Table

BASSUP - the BASIC support package

PARSE — the BASIC parser

GETPUT - GET and PUT bytes from/to VDP and ERAM
NUD — assorted NUD and LED handlers

SPEED - speed-up routines for GPL subprograms
MVUP - move f{orwards in memory
GETNB - get non-blank for crunch

Block 1 at >7000
FORNEXT - the FOR and NEXT statement handlers
STRING - extended string package
CIF - convert integer to floating

SUBPROG -~ CALL., SUBEXIT, and SUBEND handlers
SCROLL ~ screen scroll, other small routines
SCAN - static scan dispatcher code

PAGE & Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

GREAD - read ERAM into CPU
GWRITE - write CPU to ERAM
DELREP - program line—delete
MVDN -~ move backwards in memory
VGWITE - move from VDP to ERAM
GVWITE - move from ERAM to VDP
Block 2 at 27000
CNS - the convert number to string routine
TRINSIC - the trig and asst intrinsic package
CRUNCH - input-line crunch

The second link-edit contains all of the modules listed in
the first link—-edit except that the modules in block 2 are left
out, When the code is loaded into a simulator or into an EPROM
burner the code in the second link edit is used to get the code
in block 1 only. When the code contained in the first link—-edit
is loaded the code in block 1 is over-written by the code in
block 2 and therefore the fist link-edit supplies the code in
blocks O and 2.

The ROM code within the 99/4 console is utilized in two
ways. First, the GPL interpreter 1is wused to interpret the
portions of Product 359 BASIC which are written in GPL. Second,
the floating point routines of the console, and some of the
conversion routines of the console are used to minimize the
amount of code which appears in the Software Module and to
optimize the speed of the BASIC.

3.1.2 GROM Usaqe

The GROM portion of the interpreter contains a substantial
portion of +the BASIC interpreter, The line-input, program
editing and static—scanning routines are contained in the GROM.
Some of the statement, NUD and LED handlers are also contained
in GROM. All input and output routines and all of the GPL
subprograms such as SOUND, COLOR and SPRITE are located in GROM.
The error handling routine as well as the error messages’ text
are contained in the GROM code.

The GROM portion of the interpreter is contained in five
separate assembly modules. These modules are entitled, EDIT,
PSCAN, EXEC, FLMGR and SUB and each of the assemblies handles
the portions of BASIC described by these nmemonics. EDIT handles
mainly the editing, commands and top-level portions of BASIC.
PSCAN contains the static scan routine as well as assorted
subroutines such as the line-input routine and the error
handling routine. EXEC contains all of the GPL portion of
execution except the screen / file management portions which are
contained in the FLMGR assembly. SUB contains all of the
sprite—access subprograms as well as the speech—access

PAGE 7 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

subprograms.

In order to include all of the separate assemblies of the
BASIC together the GPL object code linker is wused. The linker
is, reduced to simple terms, a file concatenator. There is no
link-editing capability so that linkage from one assembly ¢to
another is fairly complicated. This BASIC gets from one assembly
to another by wusing branch-tables which are set up at the
beginning of each assembly, ‘ORG‘ing them to permanent
locations. In order to tranfer control between routines in
different assemblies, the address of the branch-table entry for
the destination routine is used as an equate in the assembly of
the source routine. An example would be:

* ASSEMBLY 1
* BRANCH TABLE
GROM 4
ORG 40
BR READLN >8040 ~ Link to line input routine
BR PRESCN >8042 - Link to prescan routine
* ASSEMBLY 2
READLN EQU >8040 Address of link to scan
WRITE EQU >8042 Address of link to write
CaLL READLN Read an input line
B PRESCN Prescan the program

In this example, assembly 2 has the equates +for the routines
contained in assembly 1 and uses them in the CALL and Branch
statements. It should be noted that this causes one extra
instruction (the table entry Branch instruction) to be executed
for a call from one module to another.

In order to keep track of how much of the GROM is being
vused and which parts are used by which sections, a GROM MAP is
kept reflecting the organization of the conscle GROMs. The

following is the GROM MAP for the latest revision of the Product
359 GROM code.

PAGE 8 : Revision 3.0

T

Product 359 BASIC Interpretef 30JUN 80

PRODUCT 3359 GROM MEMORY MAP

0&6/30/80 10: 45 (SRH)

3 (2xxx) 4 (2xxy? S5 (2xx2)
Edit. 6000 Flmgr..... 8000 Exec..... AOCO
| ; ;
H } :
H ! i
H ! H
; ; |
bA4A H !
Pscan. 6A70 (37} ! ADB&
t H Sub...... ADFO ()
E : 2
H - !
! ! B4D1
H H Pscan....B4EO (14)
H H keytabi
i | errtab!
! H H
6K 77EB ?7D4 B7FA
(20} (42) . (5)
(47) (42) (28)
Available per GROM:
GROM 3 47
GROM 4 42
GROM 5 28
Total 117

3.1.3 CPU RAM Usagqe

The first 140 bytes of the 2546 bytes of on—bhoard RAM are
used exclusively by the BASIC interpreter. The remaining bytes
are wused by the Graphics Language interpreter and various
interrupt routines and peripheral devices. This section itemizes
BASIC’s usage of the first 140 bytes and generalizes the GPL
interpreter’s wusage of the remaining bytes. Note that the GPL
interpreter’s workspace (JEQ0 to 3FF) is also wused by the

PAGE 9 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

Assembly Language portions of BASIC, so care must be taken to
not destroy anything that the GPL interpreter needs preserved
This includes workspace registers 13, 14 and 1S

Address Name Use
00-17 BASIC statement temporaries
18-19 STRSP start of string space pointer (high address)
1A-1B STREND end of string space pointer (low address)
1C-1iD SREF temporary string pointer ‘
1E-1F SMTSRT beginning of current statement being executed
20-21 VARW screen display location start
22-23 ERRCOD error vector for communication between GPL
and assembly language portions of BASIC
24-25 STVSPT base of value stack / top of character table-8
26-27 RTNG return address for communication between GPL
and assembly language portions of BASIC

28-2% NUDTAB address of NUD table for NUDs handled by GPL
24-2B VARA screen display location end
2Cc-2D PGMPTR program text pointer into a BASIC line
2E-2F EXTRAM line table pointer to line being executed
30-31 STLN start of line table pointer(low address)
32-33 ENLN end of line table pointer(high address)
34-35 DATA pointer to current DATA element for READ stmts
3464-37 LNBUF pointer to line table for current DATA statement
38-39 INTRIN address of intrinsic function’s constants
34-3B SUBTAB pointer to first subprogram table entry in chain
3C-3D IOSTRT pointer to first PAB in chain
3E-3F SYMTAB pointer to first symbol table entry in chain
40-41 FREPTR pointer to free space to be used by symbol table

42 CHAT character being processed by the interpreter

43 BASE current option base of BASIC arrays

44 PRGFLG program/statement execution mode

43 FLAG general flag byte
46-47 BUFLEV current destruction level of the crunch buffer
48-4%9 LSUBP address of last subprogram block on the stack
4A-6D FAC/ARG — floating—point accumulators :
LE-&F VSPTR ~— Value—stack pointer
70-71 highest address of VDP RAM
72-7F GPL status block

72 DATA-stack pointer

73 subroutine—-stack pointer

74 keyboard number for SCAN

75 input character and math pack temporary
76-77 Joystick X and Y positions, math pack temporaries

78 8-bit random number

7% timer

7A sprite motion

7B VDP status register

7C GPL status register

7D character buffer for XPT and YPT

7E horizontal (X) screen pointer

7F vertical (Y) screen pointer
80-83 unassigned at this time

PAGE 10 s Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

84 RAMTOP ~ highest address available in ERAM
Bé RAMFRE — address of free space in ERAM
88 unassigned at this time
89 RAMFLG - ERAM/VDP flag
8A-BF subroutine and data stack-space
Co-D? GPL interpreter work areas
DA-DF interrupt workspace (RI3-R1S5)
EC-FQ GPL interpreter general workspace (RO-R12)
FA-FF R13~-R15 - GROM pointer, FLAGs, and VDP pointer

-«

3.1.4 VDP RAM Usage

The VDP RAM is wused as the primary memory for the
interpreter, holding the BASIC program, symbol table, I/O buffer
area and the string space, as well as the standard display,

character and color table areas. Wheen the expansion memory
peripheral is present the program and numeric variable wvalue
storage are in the expansion memory, not in the VDP. The

discussion here assumes that the memory peripheral is not
available and the VYDP RAM must be utilized to its fullest. Usage
of the expansion memory is described in a later section.

The following table and diagram déscribe, in general, how
the VDP RAM is partitioned for wuse by the interpreter. More
information on the data structures used in these areas can be

found in the particular sections of this document which describe
them.

Addresses Use
0000-0300 Screen
0300~-0370 Sprite attribute list
0371-03BF BASIC temporarvies
03C0O-03FF Roll-out area
0400-077F Character tables
0780-07FF Sprite velocity block
0800-081F Color tables
0820-08BE Crunch buffer
08C0O0-095E Edit-recall buffer
0260~ Value Stack
dynamic String Space
dynamic File attribute blocks
dynamic BASIC symbol table
dynamic BASIC line number table
<~3FFF BASIC program text storage

Figure 3.1.4.1 contains a graphic representation of how the
VDP RAM is partitioned for use by the BASIC interpreter.

PAGE 11 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

Product 359 VDP Memory Map
@370 —=ldm e — ———— ——— »>3FFF

H Crunched Program

I N ————— e e +

-~
.
2
m
r4
c
3
o
1]
-4
-~
1]
o
p—t
1]

o B T — +

Static Symbol Table

[}
]
'
]
t
T
—— — - e e e e e
]
1

I
i
A
R

SYMTAB

FREPTR --2 Dynamic Symbol Table and PABs

BTREP b e e e e e e e e e +
] [}
! String Space i

STREND —-34———mmmmmmmmm S — +

VEPTR =l e e e e e e e e e e +
| Value Stack i

STVSPT —=D+——— - — -—+ 0960
i Edit-recall Buffer H

RECBUF ==J+——m——— ———————————— + »08C0
H Crunch Buffer H .

CRNBUF ——=24————————m - -—+ 0820
H Color Tables i
O e e e + 0800
! Sprite Velocity Block H
e et e P e e e e + >0780
] 1
H Character H
! Tables '
+— e - ————t >0400
H GPL Interpreter Roll—-out area i
S —————— e e + >03C0
H BASIC Temporaries !
—— - - >0370
! Sprite Attribute List H
e e e e et e e e e e e e + >0300
{ Screen H
[B]
e ———————— e + >0000

Figure 3. 1. 4.1

The VDP temporary area 1is wused for maintaining several
seldom~used wvalues as well as some things, such as the sound
list, which must have space allocated for them in the VDP RAM. A
complete list of the VDP temporaries used appears in the

PAGE 12 R Revision 3.0

Product 3579 BASIC Interpreter) 30JUN 80

following figure.

EXTENDED BASIC
VDP Addresses

of bytes
>370 End of SAL - must always be a >DO 1
>371 LODFLG - flag indicating if auto-boot needed 1
»372 START - line to start execution at 2
>374 unused 2
»>376 SYMBOL - permanent symbol table pointer 2
>378 ONECHR - place for one character for CHR$ 1
2379 VRMSND - sound list I

>381
»382 SPGMPT - saved PGMPTR on break
>384 SBUFLV - saved BUFLEV on break
»386 SEXTRM - saved EXTRAM on break
>388 SAVEVP - gaved VSPTR on break
>38A ERRLN ~ on-error line pointer
»38C BUFSRT ~ starting screen addr for edit recall
>3BE BUFEND - ending screen addr for edit recall
>320 CSNTMP - temporary for FAC12 after CSN
>392 TABSAV - saved symbol table ptr on break
>3%24 AUTTMP -~ auto—-boot temporary
2326 SLSUBP - saved LSUBP on break
>398 SFLAG - saved FLAG bits on break
»3%A SSTEMP subprogram prescan temporary
>39C SSTMP2 subprogram prescan temporary
>3%E MRGPAR - saved PAB pointer for MERGE
>3A0 RMDX2 - random number seed 2
2345 RNDX1 - random number seed 1
>34A INPUTP - pointer to input prompt
>34AC ACCVRW - ACCEPT temporaries for VARW, VARA
>3AE ACCVRA - in "TRY AGAIN" case
>3B0O VALIDP - pointer to the standard string in VALIDATE
>3B2 VALIDL - length of the standard string in VALIDATE
>3B4 SIZCCP - SIZE temporary for CCPADR in “try again®
>3B6 SIZREC - SIZE temporary for RECLEN in "try again®
>3B7 ACCTRY — "tvy again" flag in ACCEPT
>3B8 SIZXPT - save XPT in SIZE in case "try again" case
>389 SAPROT - PROTECTION flag in SAVE
>3BA CSNTP1 - temporary for FAC10 after CSN
>3BB unused .
>3BC OLDTOP - temporary for RELOCA in FLMGR
»3BE NEWTOP ~ temporary for RELOCA in FLMGR
Figure 3.1.4 2

MR ==~ PBNRDUURN VORI

3.1.5 Expansion RAM Usage

The expansion memory, when present, is used for the storage
of the BASIC program and the numeric variable values. By using
the expansion memory in this manner, larger programs and larger
sets of data may be handled by the interpreter. When present,

PAGE 13 Revisiaon 3.0

Product 359 BASIC Interpreter 30JUN B8O

the expansion memory is utilized in the manner shown in the
following diagram.

Product 359 Expansion RAM Memory Map

>xFFF e e e e e e e +<~~-RAMTOP
x=D, F ! !
H BASIC i
! H
! Program i
i []
] 1
H t C—--ENLN+1
e +
{ {<—-ENLN
H Line Number H
H Table !
H {<—~-8TLN
< h s [Rpu—— s s e
i {<~-5TLN-1
H Numeric scalar H
i and array storage !
: : E
i v i
+—- e e e e e e i o e e e e -+
i Free Space ! <——RAMFRE
>A000 +——rm——- - —

Figure 3. 1.5 1

Much more information on how the expansion memory is used
and is interfaced to can be found in the froduct 359 BASIC
Interpreter Expansion RAM Peripheral Support Software

Specification. That specification is considered to be a part of

this document.

HAGE 14 * Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

4 0 Interpreter Phases

This section describes the three different phases involved
in entering and executing a BASIC statement or program. These
phases are: statement / program entry (editing), statement /
program prescanning., and statement/program execution. Each of
these phases, of course: have several subphases under them and
these are also described in detail so that the code can be
analyzed and / or modified by persons needing to do so.

The outer-most 1level of BASIC, commonly referred to as
top-level, is the global dispatching element which determines
what has been entered from the keyboard (statement, program
line, command, etc.} and takes care of dispatching control to
the proper handling element. The following is a pseudo—-code
description of the top—level of BASIC.

BEGIN
REPEAT FOREVER
READ_INPUT_L INE
CRUNCH_INPUT_LINE
SELECT “INPUT LINE"

WHEN "DIRECT STATEMENT"
SCAN_NEW_STATEMENT
PARSE_NEW_STATEMEMT

WHEN "“PROGRAM L INE™
EDIT_PROGRAM_LINE

WHEN "COMMAND"
EXECUTE_COMMAND

END SELECT

END REPEAT
END

Functionally this is an endless 1loop, since ‘the BASIC
interpreter has no logical end. The interpreter is exited via
the execution of a BYE command.

4.1 Editing

The BASIC editor consists of routines ‘to read an input
line, <crunch a line into tokens where possible, and to handle
editing by line number (deletion, addition and replacement).
Each of these sections are discussed here.

4.1.1 Input

The 1line input routine 1is entitled READLN. This routine
takes care of reading a character from the keyboard, displaying
the character on the screen and returning to top—level when a
line is terminated with a carriage return, and conditionally
with wup—-arrow or down—-arrow depending upon the particular mode

PAGE 15 Revision 3.0

Cow sl e m e gl AR

R s W W T
v

Product 359 BASIC Interpreﬁer . 30JUN 80

which is active when the routine is called

READLN has three modes of operation when used for accepting
BASIC statements and commands. The three modes are: normal line
input, auto-num input and edit-mode input.

Briefly, normal line input is when the READLN routine has
been called with none of the special modes set. It is merely

accepting a line of input. This will become clearer as auto-num
input and edit-input are illuminated.

Auto-num input mode is active after the wuser has entered
the NUM or NUMBER command and BASIC is generating sequence, or

. statement, numbers automatically. Auto-num mode does not allow

one to modify the line number generated and this mode is exited
by entering a return key without including any other input on
the line. If auto-num generates the line number of a statement
which already exists in the program the editor goes into
edit-mode for that statement as described in the following
paragraph. The editor returns to standard auto-num mode when a

sequence number is generated which does not appear in the
program.

Edit mode is invoked by the user entering the line number
of a statement in the program and terminating the line with an
vup—arvow or down—arrow key. When this occurs +the line is
displayed on the screen and the cursor is positioned at the
first character of the line. At this point all of <the 1line
editing features described in the following section become
active for that line allowing the user to change a single line
in a program without re—~entering the entire line. If the user
terminates a line in edit mode with an up—arrow, the previous
line in the program is displayed on the screen and edit mode is
active for that line. If the user terminates a line in edit mode

with a down-arrow, the succeeding 1line in the program is
displayed on the screen and may be edited. Edit mode is exitted
by terminating a line with the enter key. Also, edit—mode 1is

exited if a down-arrow 1is entered and the last line of the
program is being editted. Similarly, edit-mode is exited if an

up—arrow is entered and the first line of the program is being
editted.

Whenever a complete line is entered it is immediately saved
away, in text form in the line-recall buffer so that it may be
recalled when a shift-R is entered as described below. When a
line is saved in the recall buffer, the two pointers which point
to the beginning of the 1line and the end of the line,
respectively, are saved with the line so that they may be used
when the line is recalled.

The READLN routine also contains all of the special

line~editing features of +this BASIC and they are described in
the following section.

PAGE 14 Revision 3.0

Product 35% BASIC Interpreter 30JUN 80

4.1.1.1 Line Editing

The line-editor is the lowest level of editing within the
line acceptance routines. This editor takes care of all the
editing facilities on the line level, i.e. character insertion
and deletion, cursor positioning and line clearing.

The line-editor recognizes the shift-S as a back—-arrow and
moves the cursor back one position on the screen, wrapping
around to the previous display-line if at the beginning of a
continvation line in the current input—line. Similarly., the line
editor recognizes the shift-D as the forward-arrow and advances
the cursor one position to +the right wrapping around to a
continuation line if at the end of a display-~line wuntil four
lines have been filled.

The line-editor also recognizes two other keys as being
special in-line editing keys. The shift-F is recognized as the
delete character key and deletes whatever character is located
at the cursor’s position and shifting the remaining portion of
the 1line which lies to the right of the cursor to the left one
position filling in the space left by the deleted character. The
shift-G key is recognized as putting the line editor into insert
mode. After a shift-G key 1is recognized all characters
subsequently recognized are inserted into the 1line in the
postion immediately preceeding the cursor. Any characters to the
right of the cursor which meet the end of the fourth allowable
input line are bumped off of the end until the cursor reaches
the end of the fourth input line.

The shift~-R key, is recognized as the line recall key. When
this key is depressed, the current input line is ignored and the
most-recently entered line is recalled from the TtTecall buffer
and may be modified or simply entered again.

The shift-T key, is recognized as the field clear key and
when depresses clears the entire input #field between the
beginning and ending pointers.

The line—-editor also keeps track of any changes in the
current input line. If no changes have been made, a flag is set
indicating that no changes have been made to the line. This flag
is wused by the EDIT routines as an indication that the current
program line doesn’t need to be replaced. This speeds up program
editing when the user is only scrolling through the 1lines in
edit-mode.

PAGE 17 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

4.1.2 CRUNCH

The Product 359 BASIC interpreter uses a “crunched" version
of the actual BASIC text for direct execution. This enhances the
speed with which each program line can be executed since all
lines are already pre—-processed.

This pre-processing involves the sorting of each item in
the BASIC line into one of the following categories

BASIC keywords — e.g. FOR, TO, LET etc.. (see Appendix
A).

* Unquoted strings — strings within DATA, CALL and IMAGE
statements not surrounded by quotes.

Quoted strings - Any strings surrounded hy quotes.

Line references

ASCII text -~ variable names and comments

%

After the BASIC line has been pre—-processed or "crunched",
it can be sorted into the current program segment if a line
number has been detected at the beginning of the line.

The crunch algorithm is based around the character property
table (CPT) and a current crunch modse. Initially when the crunch
routine is invoked a normal (non—-special} crunch mode is entered
where tokens are recognized and variables are recognized and any
numerics are crunched in the special numeric format. Whenever a
character is scanned by the crunch routine it’s character
property is looked up in the CPT to determine if the character

is, say, an alphabetic or an aperator. Characters are
accumulated wuntil a character which does not fall into a
particular character property is encountered. Keywords in the

language are then identified by searching the keyword tables for
the accumulated string to see if it is there. If it is the
string is replaced by the associated keyword token wvalue,
otherwise it is left as a string of characters, which is
presumably a variable name. For example, the statement ‘A = B’
is crunched as ! 41 ! BE ! 42 !. Some keywords cause special
crunch cases to occur based upon their meaning and syntactic
requirements for execution time. Whenever a special keyword in
the language is recognized (e. g. DATA, ::, GOTD, etc.) a special
crunch mode is entered. In some cases (GOTO, RUN, GOSUB, etc.)
the special mode involves crunching any numerics encountered in
the input stream as special line number tokens. In other cases
(DATA, IMAGE, etc.) a special mode where characters are crunched
as wunquoted strings instead of tokens an/or variable names is
entered.

The end-of-line is always indicated by putting a zero byte
at the end of the crunched line

PAGE 18 5 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

4.1.2.1 Gpecially Crunched Language Elements

There are some elements of a BASIC statement which are
crunched specially. In particular, numeric constants, unquoted
string constants and line numbers are crunched into special
formats.

Each time a keyword in the language is encountered it 1is
translated into its corresponding token (appendix A), e.g. PRINT
is €ranslated into a >9C. Whenever a numeric constant is
encountered it is converted into the form of:

i 2C8 | 1-byte length | ASCII characters of numeric !

An example of this would be the number 3.1415926 would be
crunched as:

i €8 1 092 | 33 | 2E { 31 1 34 | 31 I 35 ! 39 | 32 ! 36 !

3 . i 4 1 S 4 2 &
All numerics which occur in BASIC statements are crunched into
this form, including FOR, DATA, PRINT, etc.

Unquoted strings which occur primarily in data statements
are crunched in exactly the same manner as numerics, using the
same token value, >C8B. For example, the BASIC statement ‘DATA
HELLO’ is crunched as:

¢ 3 1 C8 1 05 ! 48 | 45 4 4C | 4C | 4F i 00 !

DATA H E L L 0
Other places where unquoted strings occur in this BASIC are the
names which are in: CALL, S5UB, oLD, SAVE. For example the
statement ‘CALL CLEAR’ is crunched as:

{ 9D 1 C8 1 05 | 43 { 4C 1 45 ! 41 |t 52 | 00 !

caLL C L E A R

Quoted strings are crunched in identically the same manner
as numerics and wunquoted strings except that a different
identifying token, »>C7, is wused. Note that when crunching a
quoted string double gquotes (two quotes in a row) are translated
into a single quote and that single quote is included in the
string. For example, the quoted string "AB""CD" would be
crunched as:

1 C7 + 05 | 4

1 ¢ 42 1 22 | 43 | 4
A B

4
" ¢ D

One other element of the language is crunched specially,
and that is line number references, in such statements as GOTO,
BREAK, IF~THEN-ELSE, ON ERROR, etc. Line numbers are crunched as
the line number token (>C9) followed by two bytes containing the
binary representation of the line number. For example, the
statement ‘GOTO 1000’ is crunched as:

tB6 1 C? L O3 | EB ¢
Note that by storing the line number in this manner the GOTO
code and the resequence algorithm are greatly simplified over
storing the numbers as numerics.

PAGE 19 Revision 3.0

Product 359 BASIC Interpreter 30JUN B0

4.1.2.2 Crunching Multi-statement Lines

Crunching input lines with multiple statements on them
presents a couple of minor problems. First, the statement
separator must be watched #for which is a problem because it is
the only token in all of BASIC which consists of two other
tokens. Normally, without the statement separator, two colons
would be crunched as two tokens. This means that several places
in the crunch routine a read-ahead must be done when a colon is
encountered to determine if it is followed by another colon. A
colon can be identified in two ways because of the way the CPT
is structured. A colon can be identified by 1looking for the
ASCII colon value itself or by looking for the multi-operator
character property since the colon is the only multi-operator
which occurs in +£his BASIC. When twe colons in a row are
encountered, they are crunched as the single statement separator
token and not as two colons.

Another important thing to remember about the crunch
algorithm is that whenever a REM statement or a tail remark
indicator (!) is encountered, the remainder of the input line is
taken as a comment and two colons in a row will not indicate a
statement separator, but merely two colons in a comment.

The crunching of data and image statements is handled
specially so that any double-colons or exclamation points are
included as data items or within the image format, respectively
and not as indicating a statement separator or a tail remark.

4.1.3 Program Image

The BASIC program segment consists of a number of crunched
program lines. Each line is terminated by a zero byte. For
editing purposes, a line length is added at the beginning of
gach program line.

e + e et et e e i o o e e 2 e e e

Figure 4.1.3.1 Program line representation

The line number of each program line is stored in a
separate "line number table". This table is physically located
below (at a lower address) the program text in memory. Each
entry in the line number table consists of 4 bytes, containing
the 1line number (2 bytes) and a pointer to the beginning of the
- corresponding program line in the program text segment (2
bytes). This pointer is not pointing to the length byte of the

PAGE 20 Revision 3.0

Product 359 BASIC Interpreter 30JUN B0

program line, but rather to the first item in that line.

This separation of line number table and program text
segment was chosen to speed up execution of instructions that
reference line numbers (GOTOs, GOSUBs, RESTORE etc.).

The entire program segment is being controlled by three
pointers

* Top of memory pointer, located at location »70 in CPU
memory for a VDP based program or at location 284 in
CPU memory for an expansion memory based program,

ENLN(CPU 232) -~ indicates last location used by the
line number table. This pointer is painted at the
least significant byte of the program line pointer.

BTLN(CPU 2>30) - indicates the lowest or first memoTy
location used by the line number table. This pointer

is pointing at the most significant byte of the line
number.

The line number entries in the line number table are stored

in reverse lexical order, i.e. the highest 1line number is
located at the lowest memory address. Entries in the program
text segment are being made in time-order, 1i.e. the last line

entered is stored at the lowest memory address. Entries in the
program text segment are therefore pot in any logical order.

Figure 4.1.3. 1 shows the memory image of a program stored in the
VDP memory.

+ - st e e e = Top of memory
! bt o e +
H PROGRAM TEXT e H
H H H H
H R et + H
o e - e e —— H H
! First line H Pointer P -+ H i
H ! {C~ENLN ! |
e e ke e e i o i e + H i
~ N H H
o e et e e - - e H H
t Line number H Pointer {————————— + H
7 e s st e et o 1t s e S i St e e e + H
STLN =21 Last line H Pointer P, +
e 1 2 . et e i s o +
FREPTR-> | H
"y Ny

Figure 4.1.3.1 VDP Program memory image

Figure 4.1.3.2 shows the program image of a program stored
in the expansion memory.

PAGE 21 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

o e e e e e e e i e e e e +{{=~ »DFFF or >FFFF
H t e e e +
H PROGRAM TEXT HEE !
E Py S— o
e et e e -— -+ ! ! '
i First line H Pointer {—— ! H
H { {C—-ENLN ! {
O _——— —_— - ! !
P - S Lo
{ Line number { Pointer e + |
e —_—— !
STLN =321 Last line H Pointer { o o o o e e e e +
Fom———— - v e +
RAMFRE-2:{ !

Figure 4.1.3.2 Expansion Memory Program memary image

4.1.3.1 VDP_RAM Program Editing

Program editing consists of two separate parts, line
deletion, and line insertion. Whenever a‘line has been entered
from the keyboard, a search is made of the line number table to
see if a line with the same line number already exists. If it
does, the line must be deleted from the text before the new line
can be inserted into the program.

In order to delete a line, the text pointer within the line
number table is used to get the pointer to the line text. The
line’s length is then picked up by decrementing the text pointer
and getting the length from the VDP RAM. Next, the line text is
deleted from the program text area by moving all of the other
lines’ text that reside at lower memory addresses up in memory
to fill the space occupied by the deleted line. The line table
is then updated by sequentially going through it and adding the
distance moved to the pointers of each program line which moved.
The old line number entry is deleted from the +table at this
time.

In order to insert the new line in the program: the line
number table is moved down in memory and the new program line is
appended to the lower end of the program text area, Just above
the 1line number table. Note that none of the text pointers in
the line number table need to be changed as the lines in the
program did not move, only the pointers to them. The line number
table 1is now searched to find the correct place to locate the

~new line number and the new line number, as well as the text
pointer are inserted into the table, completing the line
insertion.

PAGE 22 s Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

The following flowchart describes visually how the editor
works.

EDITLN
'
/ N\
/line \ Y
/ # \=———2EDIT$1~~—->return
\ only? / delete line
\ /
N/
{ N
Y
INSREP
/ A\
Y / \
e e e e /insert \
H \ of ist/
| \line?/
H \ 7/
H I N
i e >V
H i N EDIT#3
H / A\ / \
i / at \ HIGHER/ \ LOWER
H /highest\{-———= /comparg\—————m—m————e >+
H \ in / \#w/# in/ ‘ v
H \ Prog/ \table/ H
H \N?/ N/ i
! L ¢ ‘ t EQUAL i
! i V H
i i DELTX !
H ! o e e e e + H
H H { delete text | i
H H o e e e + i
| - ! !
v Vv v Y
EDIT$S5——=-2EDITHS6—~———m—m PEDIT#8C -~ EDIT#4
set up 1st concatenate update entry in allocate space
entry in line # line # table, in line #
line # table entry to put text in table
table H
Vv
DONE

Figure 4, 1. 3. 1.1

4.1.3.2 Expansion-Memory Program Editing

Program editing of a program in the expansion memory is
identical to editing a program in the VDP RAM. The same code is
utilized for wediting a program in the expansion memory except
that every place that the memory must be accessed a check is

PAGE 23 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

made to see if the expansion memory is present and if so the
access is made to it, rather than to the VDP. More information
on editing a program in the expansion RAM can be found in the

Product 359 BASIC Interpreter Expansion RAM Support Software
Specification.

4. 1.4 Auto—num

The auto-num feature is included in the Product 359 BASIC
to provide for ease in entering programs into memory. Auto-num
consists of two phases within the interpreter. First, is the
processing of the number—-command and second is the automatic
generation of sequence numbers as each new line is entered.

The processing of the number—-command involves setting up
the fwo interpreter wvariables CURLIN and CURINC with the
starting line number and the increment for the sequence. First,
they are set up with the default values of beginning with line
number 100 and incrementing by 10. If either, or both, of the
optional arguments are present these values are updated with the
supplied value or values. Auto-num then sets the AUTONUM bit in
the wvariable FLAG to indicate that the interpreter is in
avto-num mode. Auto—num then returns to top—level and proceeds
to generate the line numbers as needed. '

Auto-num mode normally takes the current line number value,
CURL.IN, and adds the current increment value (CURINC) to it to
generate the next line number in the sequence. If the next line
number to be generated exceeds the implementation defined
maximum line number of 32767 then auto—num mode is exited in the
same manner as when an empty line is entered to terminate
avuto—-num mode.

In the special case that the 1line number generated by
auto-num mode is the line number of a line in the program in
memory, then the line is retrieved from memory and displayed on
the screen for editing, Just as if edit-mode had been entered.
When the 1line has been editted and the enter key has been
pressed, the interpreter returns to standard auto-num mode
(enters edit mode again if the next line number generated also
matches a line number in the program). Note +that when the
interpreter is in auto-num mode and edit—-mode is entered from
that state, the up—arrow and down-arrow keys function exactly as
the enter—~key, terminating editing of ¢the current line and
generating +the next line number in sequence, not moving to the
previous or next line in the program as in simple edit-mode.

PAGE 24 Revision 3.0

Product 3539 BASIC Interpreter 30JUN 80

4.1.5 List

In order to be able to look at a program once it has been
entered into memory, the list—-command is included in the Product
359 BASIC interpreter. The list-command has the ability to list
a portion of a program or all of a program to either the
display or a device. Execution of the list—-command begins by
scanning the list-command for a line-range and for a device
name. If a line-range or single number is specified, then two
pointers are set up to point into the line number table to the
first and last lines to be listed. The pointers can be equal to
each other indicating that only one line is to be listed as well
as pointing to the first and last lines of a praogram if ¢the
entire program is to be listed.

After the line number range has been found, the list
routine checks to see if the listing is to go to the display or
to a device, I+ +the listing is to go to the display then the
display is initialized for output. If the listing is to go to a
device, a dummy PAB is used to open the device and flags are set
to indicate that the device is the destination of the listing.

List then goes into a 1loop, calling ¢the line—listing
routine, LLIST, to take an individual 1line of a program and
restore it from its crunched form to a source form and to output
it to either the screen or to the device. Special code is
utilized to be able to list a program from the expansion memory.
After all of the lines to be listed have been put out, a check
is made to see if the output went to a device or to the screen.
If the listing went to a device, the device is closed. In either
case, control returns to top-level. Note that in the case of
device output, <control returns to top-level by branching to
TOPL1O which initializes the symbol table and string space

4.1.6 Reseguence

Execution of the resequence feature of the Product 359
BASIC interpreter is a three-part operation. First, the
resequence—command is scanned to pick up the optional starting
line number and/or increment. If they are found they are used,
otherwise, the defaults of starting with 1line number 100 and
incrementing by 10. The next phase of the resequence operation
involves searching all of the text in the program looking for
any line number references.

I#f a reference to a line number is found, the line number
table is searched to find it. When it is found, its offset into
the table is wused to <calculate the line number that it will
become. When the new line number has been calculated, it is
inserted into the program text and the entire process is
repeated until all line number references in the program have
been found and replaced.

PAGE 25 Revision 3.0

Product 359 BASIC Interpreter : 30JUN B0

The 1line number table, itself, is then updated by going
sequentially through it placing the new line numbers in the line
number portion of each line entry. After the entire operation is

completed, control returns to top-level to await the users’ next
command.

4.2 Prescan

Before a BASIC program is actually executed it must first
be scanned in order to generate a symbol table which contains
all of the variables used in the program and to generate a

subprogram table which contains all of the subprograms
referenced in the main program and all of the subprograms it
references. The static scanner also builds a symbol table for

2ach of the subprograms referenced so that sach subprogram can
have its own, local, variables. It also resolves all references
to subprograms which occur in the main program and any
subprograms it references.

The static scanner also does some error checking which
consists mainly of syntactical checks and for consistent use of
all symbols. The scanner checks to make sure that each FOR
statement has a corresponding NEXT statement, that INPUT,
LINPUT, DATA, GOTO, GOSUB, DEF, RETURN, IMAGE and OPTION BASE
statements are not used imperatively. It also insures that SUB,
SUBEND, NEXT, FOR. OPTION, DIM and DEF do not appear inside a
THEN or ELSE clause of an IF statement. THEN and ELSE must occur
in an IF statement

In order to lessen the time spent between when a rtun
command 1is entered and execution actually begins, the static
scanner also looks for a DATA statement in order to initialize
the two pointers, DATA and LNBUF, needed by the read statement
to keep track of the current data position within the program.

After a program or imperative statement has been properly
scanned control flows to +the execution portion of BASIC to
execute the program or statement.

4.2.1 Symbol Table

In order to be able to use variables in a BASIC program
memory must be set aside to describe each of the variables and
to store each variable’s value. In order to do this, this BASIC
prescans each program line and builds a symbol table containing
an entry for each symbol (variable) used in ¢the program. A
standard format 1is wused for all symbol table entries. This
- format is shown in figure 4.2.1.1 below.

PAGE 26 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

ke e e e S S Sk St T St RN WU QY
HE A t bt Name
SiIFIRI | | Dims! | | | iLength
i i 1 1 1)] 1 1 1
1 t 1 t 1 i 1 1 1] 4

Rl e
0
o
%
3
<t
m
-1
r
Q
oe |
i
3
24

_______________ e o e v st s e e v i et s e e e cm
——————————————— e o v o s ot e ey ot s S e s, s s s H
]

1

Value Space ~

!

——————————————— o e e

The following meanings have been attached to the bytes
contained in a symbol table entry.

WORD 1

8§ - String flag - set if a string variable else reset

F - User—defined function flag - set if user—defined function
else reset '

R = Share flag. indicating a shared symbol(in subprogram
calls) ~ set if shared, reset at all other times.

Dims - Number of dimensions or function parameters - legal
values 0 - 7

Name length - Length of symbol’s name - legal values O - 15

WORD 2
Symbol table 1link - link to next entry in table or zero if
end of table

WORD 3
Pointer to name - pointer to an occurrence of the symbol’s
name

WORD 4+
Value space — symbol‘s value space which contains:
Dimension information if array entry, 2-byte maxima per
dimension

B-byte entryl(ies) for numerics;

2-byte pointer to value in expansion RAM for numerics;

2-byte entry(ies) for strings;

2-byte pointer to definition for user—~defined
functions;

2-byte pointer if a shared symbol.

PAGE 27 Revision 3.0

Product 359 BASIC Interpreter : 30JUN 80

4.2.2 Subprogram’s Symbol Tables

A subprogram’s symbol table is virtually identical to the
main program‘s symbol table, except that the new bit in the
header is used. The new bit, the shared bit is set when a formal
parameter is sharing a value with an actual.

In the case of an formal being shared the shared bit is set
and the value space for that entry contains the address of the
value space of the actual it is sharing the value with. The
following diagram shows this condition.

3

PAGE 28 Revigiaon 3. 0

Product 359 BASIC Interpreter ' 30JUN 80

Subprogram Symbol Table

Figure 4. 2. 2. 1

Note that in the case of an array being shared, the pointer
into the value space points directly at the dimension maxima
information. For this reason redimensioning of arrays is not
possible. For more information on subprograms see the Product
359 BASIC Subprogram Specification.

4.2.3 GSubprogram Name Symbol Table

This section deals with the special symbol table generated

for subprogram headers. This table contains only entries for

PAGE 29 Revision 3.0

Entry

e e s T Lt SR U SRS S WU G e

HEH H bbbt Name |

{SIFiL! ! Dimsi{ | | | lLength !

] 1 [}] i 1 [}] [] [}

1]] 14 1 1 1 1] 1 [

R B D e e s o T S |

]]

1 1

i Symbol table link i

H :

e At e e e e e e i

i '

H Pointer to name i

‘ !

e it L T + - ————

{]

! Pointer to Actual’s =+

H Value Space I

I et o ———————— + Symbol Table Entry
H In Calling Program
I A S e St S S S SR R SRS
H LA H bt Name
H ISIFIRI { Dimsi | | | ilLength !
€ 4]]] 1] 4 [} 1 1]
t i i t 1] i 1 1]] 1
H D sl e e s s T SRR
i 1 1
] { t
H { Symbol table link H
! H g
]] 3 e —
1 § T s s s e - 1
! ! i
! i Pointer to name i
H ! |
! { o e o e e e e e e :
] 1]
[} t 1
+=21 Value Space H

| H
P e 7/ i

Product 359 BASIC Interpreter 30JUN 80

subprograms that are defined either internally, or contained
externally, as Graphics Language subprograms. BASIC subprogram
entries and assembly (GPL) language entries contain different
information due to the fact that assembly language routines must
be accessed by an absolute address and do not have BASIC symbol
table entries passed to them by the interpreter. BASIC
subprograms are loaded via the internal relative addressing
structure of BASIC for internal subprograms and must have
provisions made for the passing of parameters. Assembly Language

(GPL} subprograms handle this themselves. '

The subprogram symbol table has essentially the same format
as a variable symbol table so that common routines can be used
in constructing them and searching them. Please note that
certain flag bits in the subprogram symbol table entries have a
completely different meaning than their " counterparts in the
variable symbol tables. No conflicts arise from this condition

because separate code is used for interpreting the flag bits in
the header.

PAGE 30 s Revision 3.0

Product 3359 BASIC Interpreter 30JUN 80

Figure 4. 2. 3.1 is a diagram of the subprogram table entry
format for BASIC language subprograms.

b s e + s St S
N i Name |
LR { Lengthi
1 1 1]
1 L3] 1

e o e s s et e e e S s o s i s s s v s e B b H

+
'
'
tu
]
L}
'
i
i
L
'
t
'
1

1
Subprogram Symbol table link !

P e e o o e e e e e e e !
1]
n H
H Pointer to name o
H !
1 1
L}]

a2 ek Saras e s e v i i e e . S s g S S SRS S S e S S o S o S oo S

: argument 1 H
_______________ e o s e tte e 204 20 st o ot e s i

argument 2

1
1
1
1
J— —m - ———
1
t
1
'

_______________ ot i e e i i e e e e s e
argument n i

- " W Ao i e s ot S et et St S

L] 1
H Pointer to subprogram’s i
i symbol table H
e S ————

Figure 4. 2. 3. 1

WORD 1
U ~ In-~use flag: set if subprogram in use, reset if not
L - Language flag: reset since BASIC language
Name length - Length of symbol’s name: range - 0-15

WORD 2
Subprogram symbol table 1link - link to next entry in
table or zero (0) if end of table

WORD 3

Pointer to name - pointer to an occurrence of the
symbol ‘s name

PAGE 31 Revision 3.0

Product 359 BASIC Interpreter - 30JUN 80

WORD 4+

argument 1...argument n - pointers to subprogram symbol
table entries for formal arguments

0 - GSignifies end of arguments and beginning of
environment information

PGMPTR =~ Pointer into the sub-statement of the
subprogram

EXTRAM - Pointer into line number table to line that

contains the sub-statement of the subprogram

Pointer to subprogram’s symbol table — pointer to first
entry in the subprogram‘s symbol table or zero (0O)
if table empty

Figure 4.2.3.2 is a diagram of the subprogram table entry format
for Assembly (Graphics) Language subprograms.

B T + o e
L { Name |
HAV RN I i Length!
LI T H H
L S —— o ———— o —————— !
(] []
] 1
{ Subprogram Symbol table link |
! !
| JP— o i e e PRSI
1 L t
(] i
1 L]
{ Pointer to name H
1 t
] —— — v —
1 v '
i]
& i
H Access address |
H H
e o e e e e s o et e e e e e +

Figure 4.2.3. 2

WORD 1 .
U - In use flag: set if subprogram in use, reset if not
L - Language flag: set, since assembly language
Mame length - Length of symbol’s name: range - 0-15

WORD 2
Subprogram symboal table link — link to next entry in
table or zero (0O} if end of table

WORD 3
Pointer to name - pointer to an occurrence of the
symbol ‘s name

5

PAGE 32 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

WORD 4
Access address — absolute address of the subprogram

The in-use flag is set whenever a subprogram is currently
active. Whenever a subprogram is invoked the in-use flag is
checked and if it 1is set an error occurs due to an attempted
recursive invocation, either directly or indirectly. If the
in-use flag is not set at that point it is set before control is
turned over to the subprogram. The in-use flag is reset whenever
a subprogram is exited. For more information on subprograms see
the Product 359 BASIC Subprogram Specification.

4.3 Execution

A BASIC program or imperative statement .is executed by the
use of the XML EXECG command in GPL. When the command is
executed the Assembly Language portion of BASIC takes care of
the parsing of each statement until the program or statement has
completed or an error has occurred. Generally speaking, every
keyword in BASIC is contained in one or more tables and, when it
is encountered in a statement, a keyword—-specific section of
code is wused to interpret a particular keyword ‘s meaning. The
keyword table is ordered in such a way (see Appendix A) that a
strict precedence is set up which keeps the interpreter from
allowing any illegal statements to be executed. Whenever a
variable name is encountered in a program it is looked up in the
symbol table which was built the static scanner and its value is
picked wup or the variable is prepped for assignment, depending
uvpon its usage in any particular case. The interpreter continues
executing until the end of the statement is reached. Subsequent
statements in a program are executed unless an error or
breakpoint halts execution prematurely. ’

4.3.1 EXEC

The execution of a PASIC statement or program begins with
the acceptance of either the imperative statement or the
RUN-command. If a RUN-command was entered, the line number table
pointer is set up to either the first line in the program or to
the line specified in the RUN command. This pointer is left in
the VDP variable, START, and 1is preserved throughout the
prescanning of the program. If an imperative statement was
entered, it is prescanned and then immediately executed.

In order to execute a BASIC statement or pragram, control.
flows to the beginning of the EXEC assembly of the interpreter.
If a program is to be executed, the saved line table pointer in
START is moved to EXTRAM to allow the program to begin execution
at some line other than the first one. If a single statement is
to be executed the text pointer is set to point into the crunch
buffer so that that statement can be executed out of there

PAGE 33 Revision 3.0

Product 359 BASIC Interpreter 30JUN BO

instead of out of the program.

The XML EXECG command in GPL is used to execute one or more
lines of BASIC. The location of the EXEC handler is found in the
appropriate XML table and dispatches control to EXECG ~in the
FARSE assembly of BASIC. EXECG sets up the necessary registers
for use by the assembly language portions of BASIC (R8 and R9)
and then <checks to see if a single BASIC statement (imperative
mode} or a BASIC program is to be executed.

I# a single statement is to be executed, the return address
is saved and the first token in the statement is picked wup and
the statement table (STMTTB) is searched for the token. If the
token is not in the table or is a variable name, the statement
is executed from there by using the address of the particular

statement handler to get to the appropriate statement—-specific
code,.

If a program is to be executed, the interrupt level is set
to 3 to allow the 9900 to handle any interrupts that it may have
received. The interrupt level is then set to O to not allow any
interrupts to occur while in the process of executing the 9900
code portion of BASIC. The next statement to be executed is
picked up by getting the pointer to.it from the line number
table. The statement’s first token is then picked up and +rom
there the statement is handled in the same manner as the single
statement described above.

After a statement has been executed successfully (errors
abort execution as soon as they are detected), control returns
to the EXEC code and the check for imperative-mode 1is made
again. If in imperative-mode, EXEC is exited and control returns
to top-level by returning ¢to the GPL interpreter. I# in
program-mode, the line table pointer is updated and if not at
the end of the program the next statement is executed in the
same manner as described above. When the end of the program has
been reached, control returns to top-level in the same manner as
when a single statement has been executed.

4.3.1.1 Statements

Each BASIC statement has unique code within the interpreter
to handle the peculiarities associated with that particular
statement. When a statement is to be executed its first token is
picked up from the statement text. A wvalid BASIC token is
expected. I+ a wvalid token is not received, the statement is
assumed to be an assignment statement which does not wuse the
optional LET and control immediately flows to the symbol code
(PSYM) which searches the symbol table for the name at the
beginning of the statement. If a valid BASIC token appears at
the beginning of the statement, its value is checked to see if
it falls within the bounds (>80 - »AA) of the valid statement

PAGE 34 : Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

tokens (see Appendix A for token values). If it does not, an
attempt 1is being made to execute an illegal statement and an
error occurs. If the token falls within ¢the legal statement
token range the address of the statement handler is looked up in
the statement table (STMTTB) and contral flows to the
appropriate code

If the most-significant bit of the statement address looked
up in the statement table is set to a one, the code to handle
the statement resides in the GROM portion of the interpreter and
the address picked wup 1is actually an offset into the table,
NUDTAB, in the GROM code. The most-significant bit is then
reset, and the address within NUDTAB is computed and control
returns to the GPL portion of BASIC to execute that statement.
Note that because of this condition, an XML PARSE command in GPL
cannot occur in any GROMs except GROMs 4 through 7. For this
reason, the Product 359 BASIC has been arranged so that all of

the parses that need to be done from GPL code have been placed
in GROMs 4 and 5.

Note that some of the tokens in the legal statement range
are not legal statements (e.g. THEN, ELSE, TO, SUB, etc.) and
the address picked up out of the statement table is that of a
routine to handle an errvor so that a statement cannot begin with
one of the tokens in the legal statement range which is not
actually a BASIC statement.

Each statement then has the responsibility of advancing the
text pointer through the statement to execute the statement.
When ¢the statement has been completed, the statement handler
returns control to the routine, CONT, which verifies that the
end of the statement has been reached (CONT is also used in
congunction with the PARSE statement described in the following
section) and returns control to EXEC to either execute the next

statement on the line, the next line in the program or to return
to top-level.

4.3.2 PARSE

The parsing algorithm wused in the Product 359 BASIC

interpreter is based wupon the paper by Pratt listed in the
applicable documents.

Pratt‘s approach associates the semantics of each token
with the token wvia a body of code unique for each token. Some
tokens may logically have two such pieces of code, which he
calls the null designator (NUD) and the left designator (LED)..
An example is the token ‘~‘ which may be both unary and binary.
The wunary meaning is described in the NUD for ‘=-‘, while the
binary meaning is described in the LED. Each token is associated
with a left binding power (LBP) which 1is wused to supply the
~precedence for a set of tokens. As the parser algorithm is
called initially and subsequently by recursion, a current right

PAGE 35 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

binding power (RBP) is maintained. Each call to the parser
supplies a RBP, which in effect tells the parser how far down
the input it must process before returning with a value. The
parser returns one value on the value stack each time it is
called. The subroutine stack is used for return addresses and to

communicate the current RBP. Simply stated, the algorithm for
parsing is as follows:

PARSE(RBP} Returns value on value stack
advance token pointer; ’
execute NUD for entry token;
push value from nud onto stack;
while RBP < LBP

advance token pointer;
execute LED for entry token;
push value from led onto stack;
end while;
return;

In order to use this algorithm, a NUD, LED and left binding
power (LBP) have been assigned by the token values used and by
the tables in the PARSE assembly of BASIC. ‘

4 3. 2.1 Precedence

The precedence of the BASIC tokens have been assigned in
order to allow the wuse of +the algorithm described 1in the
previous section. The tokens were assigned so that the statement
tokens are grouped together, the MUD tokens are grouped together
and the LED +tokens are grouped together, as much as possible.
This allows a global range checking to make sure tokens appear
in the <correct areas of the tables so that a semantic meaning
may be attached to each token. The lowest valued tokens are
those which appear 1in the statement tables and which must be
either the first token to appear in a statement (FOR, LET,
PRINT, etc.) or must be used in conjunction with one of these
tokens (THEN, TO, STEP, etc.). The remainder of the tokens
appear in the NUD tables with a small portion of these also
appearing in the LED tables (+,-,=, etc.).

4.3.2.2 NUDs and LEDs

All of the tokens in BASIC have a unique piece of code to
handle them, with some of the tokens having two such pieces of,
code. These are known as the null designator (NUD) and the left
designator (LED) codes. The NUD code is the code denoted by a
token without a preceeding expression (e.g. +3, -4). Thus, for
the wunary wuse of ‘+‘ and ‘-’ the semantic code for each is
placed in the tables as a NUD routine. In contrast, the code for

PAGE 36 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

the binary operators of ‘+‘ and ‘-’ are placed in the tables as
LED routines (e.g. 3+4, 5-6)

As can be seen, there naturally are more NUDs in BASIC than
there are LEDs. The entire LED table includes the ‘&°‘, ‘=, ‘<7,
Y2 e Y=ty Y%, /¢ and the ‘™ operators. The NUD tables
include all of the rest of the tokens in BASIC which are not
contained in the statement table. This includes such tokens as
YO Y+, =7, SIN, COS, SEG$, the numeric constant token and
the string constant token.

4.3.2.3 CONTINUE

Based wupon the algorithm described in the preceeding
sections on how the parser in this BASIC works,. it can be seen
that a routine to <check the precedence of the left binding
powers (LBPs) and the right binding powers (RBPs) is needed in
order to tell the parser how far down the statement to continue
before returning a value. The continuation routine, CONT, serves
this purpose. Its sole purpose is to compare the current
precedence with the previous precedence to determine whether the
statement has been parsed far enough or of if more parsing at
the current level must be done. The coantinuation routine 1is
accessed from GPL by the execution of the XML CONT command and

is accessed from assembly language by the execution of a
B @CONT instruction.

4.3.2.4 Multi-statement Lines’ Execution

In order to support multi-statement lines, some changes
have to be made to the front—end and tail—-end code of the
parser, specifically in EXECE and in CONT. EXECG must be
modified to set up the top-level right binding power (RBP) to be

equal to the tail-remark token so that the parser will ¢treat a
current token wvalue of 283 (tail-remark token) or lower as an

end of statement. When a token which meets that criterion is
found it is known to be one of three possible tokens: (1) a
tail-remark(>83), (2) a statement—-separator(:82), or (3) an
end—of-1line(00). The return address which 1is pushed on the
subroutine stack when a statement begins execution causes
control to go to the EXRTN label to end a statement. The code at
this location must check to see if a statement-separator has
been detected and if it has execution must continue with the
following statement. If a statement—separator is not the current
token, a tail-remark or an end-of-line token has been reached
and control flows to the code which checks to see if there are
more lines in ¢the program to be executed and, if so, they are
executed in the same manner as the line just completed. I+ the
-end of the program has been reached or an imperative statement
was executed, control returns to the top-level of BASIC ¢to

PAGE 37 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

accept the next input from the user.

Additional code must be written so that non-executable
statements, such as option-base-statements and dim—statements,
can be oproperly skipped over by the parser. When one of these
statements is detected, a scan of the statement is made to see
if another statement follows it on that line. If there is
another statement it must be executed. The code at NUDEND is

designed to take care of this situation. It scans a line
beginning at the current token and continues until a
statement-separator, tail-remark or an end-of—-line is detected.

When one of these is detected, control returns to EXECG to
determine exactly how to handle the token.

Whenever a rem-statement, tail-remark, data-statement or
image-statement is encountered in a program execution flows to
code that immediately ends the current line and returns control
to EXECG to proceed to the next line. This* means that these
statements are completely ignored and are not scanned looking
for a statement-separator as dim and option—-statements are
scanned as described above. ’

4.3.3 Data Structures

This section describes the two outstanding data structures
which are used by BASIC during execution time which have not

been described previously. These data structures are the value
stack and the string space.

The value stack is very intimately tied with the parsing
operations described in the previous section. It is the main
means of accumulating and passing data within a particular
statement evaluation and the main means of maintaining
information between any statements which dictate that
information be maintained (FOR, GOSUB, etc.).

The string space comes into play whenever a string is used
within a BASIC statement or program. All strings are copied into
the string space as they are wused and the string space is
maintained during the entire time a BASIC statement and/or
program is being executed. This data structure allows for the

feature of variable-~length strings in BASIC, from O to 255
characters.

4.3.3.1 Value Stack

Most statements in BASIC are executed at a particular time
in a program and completed with control never returning to them
(except if within a loop). There are a few statements which
cause control to pass to some other portion of a program and
then require a return to the original execution point. These

PAGE 38 R Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

statements require that certain information be kept around even
when not executing that particular statement. The FOR/NEXT,
GOSUB and CALL-statements and references ¢to vuser-—defined
functions fall into this category. Each requires return
information of some sort, as well as other information peculiar
to each. To maintain this information, one or more B-byte
entries are pushed onto the value stack.

Each stack entry has an identification byte which is the
third byte (FAC+2 or RAM(2(VSPTR)) of the top entry. The 1ID is
kept so that stack searches may be made (in the case of
FOR/NEXT) and to prevent the user from doing something illegal
and getting garbage on the stack. The third byte of the
FAC/stack entry was chosen because it is the first byte of a
floating-point number which cannot have a value higher than 99
(263). The first two bytes of the entry can have a value higher
than 99 (>463) because, for negative numbers, the first two bytes
of the number are negated. Also, when an integer variable type
is added to a future BASIC the first two bytes of the entry will
contain the value and the third byte can be used as an ID to

indicate that the FAC/stack entry contains an integer (ID 64
was reserved for this purpose).

Ofther common entries on the stack are numeric entries and
string entries. String entries, in addition to the entries
alluded to above, are also special. Numerics appear on the stack
as B-byte radix 100 numerals (this is the reason why a stack/FAC
entry is B-bytes wide). '

The stack is built in the VDP memory from >940 and may grow
as high in memory as needed or until it is about to collide with
the string space. The operations, VPUSH and VPOP, move B-byte
entries from the FAC to the stack and vice-versa. VPUSH and VPOP
work specially on string entries (see section 4.3.3.2). When the
stack and string space get close enough that they would collide,
either by pushing an entry on the stack or by allocating a new
string, a garbage collection is performed (see section 4, 3.3 2).

The stack/FAC entry for a string looks like:

o e e o ——— e TS — o +

{ Address of | 2465 ! ! Address ! Length H

iS8tring Pointer! H H Of String i of String H

o e e e e e + A o e e e 4 —_— ——
String

Figure 4.3.3. 1.1

FAC, FAC+1 - Address of wheres the pointer to the string came
from. Address of OSREF (2>001C) if a temporary or the
address of the symbol table entry if a permanent.

FAC+2 - >65 is the string identification byte

FAC+3 - unused

FAC+4, FAC+5 — Address of the first character of the string

PAGE 39 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

FAC+&,FAC+7 — Length of the string (actually in FAC+7 and
FaC+&=0)

The stack entry for a GOSUB statement looks like:

e e o e e e e o e e e e e e +

H LY ~ - S { Return line | Return line |

! ' ! i text pointer | table pointer |

it ST e L e o e e e e e e e o e e e e e e o o e et e s e e +
GOSUB

Figure 4, 3. 3. 1.2

FAC, FAC+1 - unused

FAC+2 - 246 is the GOSUB identification byte
FAC+3 — unused

FaAC+4, FAC+S — Return line text pointer (PGMPTR}
FAC+&, FAC+7 — Return line-number table pointer (EXTRAM)

The stack entry for a FOR statement looks like:

o ——————— ——t ———— e e e e e e e e e e e e e e e e e e +
tPtr. to Symbol | 2467 |} { WValue Space | Saved H
! Table Entry H : H Pointer i BUFLEV H
e i e e e e e ————— R —— e e e e e T +
{0ld Line-number! Return : H
{ Table pointer | Line Pointer | H
+ - e +
H Increment i
H Value i
e i s o e 2 et e e e e e e —— ——— e e e e
i LLoop i
H Limit i
e e e e e e e ——— ———— o e e
FOR
Figure 4.3.3.1.3

Entry 1

FAC,FAC+1 - Pointer to indeces’ symbol table entry

FAC+2 — 67 is the FOR identification byte

FAC+3 — unused

FAC+4,FAC+5 - Pointer to indeces’ value space

FAC+4, FAC+7 — Current Crunch—buffer level
Entry 2

FAC,FAC+1 - Line number table pointer to FOR line

FAC+2,FAC+3 - Pointer to within the FOR-statement’s
line

FAC+4-FAC+7 - unused

3

PAGE 40 Revision 3.0

Product 35% BASIC Interpreter 30JUN 80

Entry 3
FAC-FAC+7 — Value of increment for index wvariable

Entry 4
FAC-FAC+7 - Value of index limit

The stack entry for a user~defined function looks like:

e ot e s s i e e S o B D i1 e

it B o e e e e e o e +
H " Return it >»68 I(Function! 0Old Symbol | Old Free Space!
i Line Pointer | 270 | Type | Table Pointer ! Pointer i
B ettt e o o o e e e e e e e e e e o e +
User~defined function
Figure 4.3.3. 1. 4
FAC,FAC+1 - Return line pointer (PGMPTR)
FAC+2 - 268 is the user—defined function identification byte.
270 when entering the parameter into the symbol table.
FAC+3 — Function type, >»00=numeric, >80=string
FAC+4,FAC+5 — Return symbol table pointer (SYMTAB)
FAC+4, FAC+7 - Return free space pointer (FREPTR)
The stack entry for an error block looks like:
e ————— o e e o ———— o o e e e e o e e +— — ———
t ErroriSever-i 269 (LUNO/ ! Error Line | Error Line |
{ Code ¢ ity | {Exec flag! Table Pointer ! Pointer H
e e e Fom———————— o e o e o e ot o e +

Error
Figure 4. 3.3.1.5

FAC - Error code

FAC+1 — Severity code of the errvor

FAC+2 - 249 is the ervor identification byte

FAC+3 -~ LUNO number if device error else O if execution error

FAC+4, FAC+5 — Error line table pointer of the line where the
error occurred

FAC+6, FAC+7 ~ Error line pointer to the beginning of the
statement where the error occurred

The stack block for a BASIC subprogram call looks
like:

PAGE 41 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

Fo B e Fm—m——— e et e e e e e e e +
t Subprogram i tWarning ! H H
i Name Symbol t »6A | /Break | H L.SUBP H
{ Table Pointer | { Bits | H !
o e + o e e e ———— e e +
H Return H Return H Return H Return !
H PGMPTR H EXTRAM H SYMTAB I RAM(SYMBOL) |
e Fm—————— e e e o o o o e e e e e e +
CALL
Figure 4.3.3. 6
Entry 1 .
FAC, FAC+1 -~ Subprogram Name Symbol Table Pointer —- The

pointer to the subprogram name symbol table entry
for this particular subprogram.

FAC+2 — >6A is the subprogram identification byte

FAC+3 - MWarning/Break Bits ~ The current on—warning
condition (PRINT,NEXT,STOP) and current on-break
condition (NEXT, STOP)

FAC4, FAC+5 —~ unused

FAC+&6, FAC+7 - LSUBP - Pointer to the last subprogram
block on the stack or O if there 1is not one
currently on the stack.

Entry 2
FAC, FAC+1 ~ Return PGMPTR -~ Pointer to where program
execution is to resume after the subprogram is
finished executing.

FAC+2,FAC+3 - Return EXTRAM - Pointer into the line
number table of the line which invoked the
subprogram.

FAC+4,FAC+S - Return SYMTAB - Symbol table pointer that
was active at the time of the subprogram invocation.

FAC+&, FAC+7 - RAM(SYMBOL) - Symbol table pointer for
the first entry in the current symbol table where
user—defined function parameters may be attached
(usually the same as SYMTAB)

4.3.3.2 String Space

The string management scheme 1is a very complicated one
which allows strings of up to, and including, 255 characters.
Strings are located in the dynamic memory area between the
symbol table and the value stack. A string has exactly one owner

any point in the flow of a user’s program. Temporary strings.
such as the string "HELLO", in the statement, PRINT "HELLO", are
copied into the string space from +the program and are left,
marked as wunused, to be reclaimed when memory is full and a
garbage collection must be performed.

User—accessible memory in the VDP RAM between addresses

PAGE 42 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

2?60 and >3FFF is used for the storage of the user’s progﬁam,
the line number table, the symbol table and Peripheral Access
Blocks (PABs) for file and device operations, the dynamic string

space and the value stack. Memory usage is, generally speaking.
layed out as follows:

o S e o <aats s H4non e A R e i S S "

Crunched
User
Program

>3FFF

B i T ppnep——

Line Number Table

o

- - — s - —

3
:
-+
!
-+
i Symbol Table / PABs
-+
+

String Space

Value Stack

T BT Nt i it . S e et G e St S Y AT] S, D o U o, K S 40, B . e e S R

2960

Figure 4.3.3.2.1

The complications involved with managing the memory can be
realized by seeing that there are five independent data
structures residing in the same memory area. No conflicts arrise
between the crunched program and the string space as the program
and its associated 1line number +table always reside 1in the

highest addresses possible and whenever the program is modiFied’

by the user the symbol table and string space are destroyed.

The symbol table and PABs present a problem in that there
can be, and probably are, strings in the string space when a
symbol table or PAB entry is allocated. Symbol table entries and
PAB ‘s occupy contiguous memory and when an entry is allocated
the entire string space is moved down (lower address) in memory

to give the needed space. The routine, MEMCHK, described below,
takes care of this problem.

As can be seen, the string space can collide with the value
stack. When this is about to occur a garbage collection is
performed to reclaim any memory that is not being used. Unused
memory can be generated in several ways. First, and foremost, by
temporary strings as described above. Second, by the closing of
a file and the consequent deletion of the associated PAB. Third,
by the elimination of a symbol table entry which 1is no longer

PAGE 43 Revisiaon 3.0

Product 359 BASIC Interpreter 30JUN 80

needed (e.g., an entry for a user—defined function parameter
after the function has been evaluated}.

Following is a detailed description of how strings are

created, wused, and destroyed in the course of executing a BASIC
program.

First, the string, itself, is copied into the string space
with a leading and trailing count of the number of characters in

it and a 2-byte back pointer which is used for the purpose of’

garbage collection.

Bl T S L LT T s VyVEDpIUpNIpH Wupsp—

o
o
8
+ -+
a
+ -+
T
+ -+
m
+ -+
r
+ -+
r
+ - 4
O
+ -+
o

e e e st e oy st saans s e s o et s s s P s s i e e o o

In the above example, the backpointer is set to zero, indicating
that this is a temporary string and can be reclaimed during a
garbage collection. The 1leading and ¢trailing length bytes
(hexadecimal) are used as the length of the string (leading) by
the string functions: such as LEN, and by the garbage collector
(trailing), as will be explained below. The string is, of
course:; stored in its ASCII representation.

If the string is assigned to a variable, then the following
is a graphic representation of the final result.

+ e s S - —_—
]

2 Value Pointer — ———————— D
! e e e e - S + !
H H Name Pointer —_—f——2 A% H
¢ - - —t i
i i Link H !
H Rt Dt e e +—— o o o o e e e e e -+ H
b ISIF! H iDims i {Name Length! !
H = e e o o o o e o e o o e o e e s e o om e o e e + H
i ! / '
H / +C— - —— +
i H H H
H ——— —— + + e o o e o e e e e e e o he
+¢{—-=—{-- back { O5 | H{ E | L + L ¢t 0Ot 05 I

B et e e s St T T S e e

Figure 4.3.3.2.3

The value pointer and backpointer are 2-byte addresses. The
value pointer points to the first character of the string and
.the backpointer points to the address of the wvalue pointer,
forming a loop.

PAGE 44 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

When, for example, a DISPLAY A% statement is executed the
pointer is picked up from the symbol table. one is subtracted
from it to get the 1length, 5, and the next five bytes
(characters) are printed. If an A%$=A% statement is executed, a
completely pew string is created, the old one is freed and the
new one is assigned to A%. Using this example, memory would now
look like:

+—— ————— e o e e e e e e e e e e +
Fo=2d Value Pointer e >+
! o e e e e e e e e + H
H : Name Pointer ——i——2 A% H
! o e e e et e e e e e e e + H
i H Link i H
' R e o ——— o o o e Fom e e e + H
SYMTAB~{——2>1SIF ! { Dims | {Name Lengthi !
H S s Dol Sl T e e it o —————— o e o o e e o e + H
FREPTR— 1 —=21 ! H
H / / !
: H ! H
i Fm———————— o e e e e o e e e e e ot e e e e e e !
: { 0000 {05 {H!E ‘L ‘L ID! 05 i<—— STRSP !
H Fro e ————— B T e s T e A sl & !
+{~—{=—bhack | 05S I H{ E I L I L {01 051 :
B i — B A S i e i Sttt & !
H 1 {~-~8TREND |
e e e e e et e i i e e +

Figure 4.3.3.2. 4
The original string is now garbage, as can be seen by the zero
backpointer, and the new string has been created and assigned to
the variable,

When a garbage collection is performed we begin at the
memory location pointed at by STRGEP (String space), subtract the
length (5 ¥ + 3 ¥from that pointer to point at the backpointer
for that entry. I+ it 1is z2ero (garbage), the pointer is
decremented by one to point at the next string’s length and the
above subtraction is repeated. If, as in the case above, this
string is not garbage (non—zero backpointer), it is moved up in
memory so0o that STRSP and FREPTR point to that last length byte.
The wvalue pointer is then fixed up by following it and putting

the new address of the string into the wvalue pointer, thus
maintaining the loop. This process is repeated wuntil the
moveable pointer reaches STREND (string end), which points to

the end of the string space. STREND is then reset to point to
the new end, completing the garbage collection. In the example,
memory ends up looking like:

PAGE 45 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

e e e e e e et e e e e +
+-—2 Value Pointer i R >+
i o e e e e e e o e e e e e e e + H
H H Name Pointer ——i——2 A% H
! P e —_— e e e + !
: H Link : :
H Fom b ———— R ———————— o e o e e e e + b
SYMTAB~-{-——-2>1GiF | { Dims | { Name Length! i
! R e R ok el S T s s sttt ¥ i
+{=~{~-—back | O0S I HIE ! L ¢t L {01 03 i<-~ STRSP |
S +~ b + e s ettt 3 FREPTR |
H {<——8TREND |
+< - — —— -

Figure 4.3.3.2.5

Another important facet of the string scheme is the FAC
entry which is created by the use of a string. The two types of
FAC entries for strings look like:

F——————— g e e e e e e o e e o e e e +
1>001C 12651 H Pointer : lLength :
v ! ! { to string | of string |
e e B et T e e +
Temporary String
Figure 4. 3.3.2. 6
for a temporary string, and;
+m e o = e e e e e e e e e e e e e e e e e +
iValue {24651 H Pointer i Length H
tPtrAddri H H to string { of string H
o e e A e e s o e e e e e e e o e e e e e e e e +.

Permanent String
Figure 4.3.3. 2. 7

for a permanent string.

The entry in FAC,FAC+1 is the address of where the pointer
to the string came from. In the case of a permanent string it is
the address of the value pointer in the symbol table. This, in
actuality, is the same value as the string’s backpointer. In the
case of a temporary string it is the address of SREF (2>001C)
which is a permanent interpreter variable dedicated to picking
up string references, This is critically important item to
remember as it is used when a string FAC entry pushed onto or
popped off of the value stack.

I+ a temporary string (FAC/FAC+1=3001C) is pushed onto the
stack then the backpointer for the string is changed from 20000
to point at the string pointer in the stack entry making the
-string semi—-permanent. At this point, the string now has an
owner and if a garbage collection is performed while the string
belongs to the stack, the string won‘t be lost. When it is

PAGE 46 ! Revisiaon 3.0

Product 359 BASIC Interpreter 30JUN 80

popped off the stack, the pointer in FAC+4,+5 is still pointing
at the string, even if it moved during a garbage collection. The
backpointer is then cleared to make it a temporary again.

If a permanent string is pushed onto the stack, nothing
special is done, as the string‘s backpointer already points into
the symbol table. When the stack entry is popped, however, the
string pointer in FAC+4/5 must be updated by wusing the FAC/+1
entry in case a garbage collection was performed while the entry
was on the stack. This is due to the fact that the string had
only one owner, namely the symbol table entry, and if a garbage
collection was performed while the entry was on the stack the
symbol table entry’s value pointer would have been wupdated and
not the FAC+4/5 pointer. This problem is taken care of in VPOP
to releive all other code from the respons1b111tg of getting the
value pointer back again.

4.3.4 Math Package

The Math package wuvsed in the ©99/4 console supports
real—-type numeric data with an overall accuracy of at least 13
significant decimal digits. The range for the exponent is E-128
through E+128. This accuracy and range is maintained in the
Product 359 BASIC interpreter, as well, since it wuwtilizes the
floating-point routines of the 99/4 console.

The format used in this implementation is the following:

mo
Zz Z
-4
X
>
-4
-
L]
m
m
>

Figure 3. 12. 1

The exponent is contained in the first byte of the floating’
point value. The most significant bit of this byte indicates the
sign of the entire value. If this bit is set, the value of the
floating point number is negative and the first two bytes have
been negated. I#+ the most significant bit of the first byte is
reset this byte contains the actual exponent in excess—&4
notation. The exponent given is a base 100 exponent, i.e. to get
the actual base 10 exponent, the given exponent has to be
multiplied by two. The value of the first byte of the mantissa
determines if the actual base 10 exponent is odd or even.

The mantissa is contained in the next seven bytes. Each
byte contains two digits in radix 100 notation, i.e. the wvalvue
of each byte is in the range 0-99. The mantissa is normalized
from 01. 000000000000 through 99. 999999999999, If the value of

the first byte of the mantissa is higher than 9 the actual value
of the base 10 exponent is odd.

PAGE 47 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80O

The valvue, zero, is handled as a special case. Its

representation is given by the first two bytes (exponent and
first mantissa byte) being zero.

For internal computation +the math package uses two extra
guard bytes, giving an extra accuracy of four base 10 guard

digits. When a computation is completed this ten byte value is
rounded to eight bytes.

4.3.53 8tring Package

The string package of the Product 359 BASIC interpreter
consists of several routines dedicated to handling strings. The
routines which are dedicated include GETSTR, the system
get—string rvoutine, COMPCT, the system garbage collector and
LITSTR:, the string literal handler of the interpreter. Several
other routines have special sections for handling strings. These
include: VPUSH and VPOP, the stack push and pop routines;
ASSGNY, the variable assignment routine; LTST20, .the string
comparison Toutine, The following sections describe some of the
above—listed routines as well as how strings are handled within

the interpreter. Also, more information may be obtained in
section 4. 3. 3. 2.

When a string constant is encountered in a BASIC program it
is ctopied into the string space via the following sequence:

LITSTR - the routine LITSTR (literal string Jbuilds +the FAC
entry by first putting the string length into FAC+&/+7.
Next, GETSTR (get string}) is called to allocate a string
in ¢the string space and and return the pointer to the
string in SREF. The address of SREF is put into FAC/+1 ¢{o
indicate +that the string is a temporary. The pointer to
the string is put into FAC+4/+5. The 245 ID for a string
is put into FAC+2. Next, the 1length of the string is
checked to see if the string is null. I+ the length is not
zero, the string is copied into the reserved string. If
the length is zero, the string does not need to be copied.
Note that in copying the string a check must be made to
determine if the string is to be copied from a program in
the VDP or from a program in the expansion RAM so that it
may be copied from the correct memory.

GETSTR — the routine GETSTR (get-string) which must check to
see if there enough room in the string space to allocate
the string. If there is room it allocates the string. I
there is not enough room, it invokes COMPCT to do a
garbage collection and then checks again to see if there
is enough room. If there 1is room now, it allocates a
string. If not, it issues a # MEMORY FULL error message.

The first thing GETSTR does is pick up +the string

PAGE 48 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

length. 1t then adds four (4) to that length to allow for
the backpointer and the two (2) length bytes. It ¢then
picks wup the end of the string space (STREND) and deducts
for the new string. The value stack pointer (VSPTR) is
then picked wup and has a 64-byte buffer zone added to it
to give added protection in ensuring that the string space
and the value stack do not collide. A comparison is done
to see if there 1is enough space. If there is room, the
exact string length is retrieved (subtract 4). The
trailing 1length byte is now put into the string space at
STREND, which points ¢to the +first free location. The
length of the string is subtracted from STREND to point at
the +first byte of the string. STREND is now saved in SREF
to be the pointer to the string when the allocation of the
string is complete. The leading length byte is now put in
by decrementing STREND by one to point at it and putting
it in. STREND is now decremented by two to point at the
backpointer and the backpointer 1is cleared to indicate
that the string is a temporary. STREND is decremented ¢to
point to the first free byte again and GETSTR is exited.
returning to the caller. The string has now been allocated
with the pointer to the string appearing in SREF and the
leading and ¢trailing 1length bytes in place and the
backpointer cleared to indicate a null string. The string
which the string space has been allocated for has not been
copied into the string space. This is the responsibility
of the caller after the string has been allocated

4. 3. & BASIC Statements

This section describes, in detail, how each of the
different statements in this BASIC is executed. The statements
are grouped together in general categories based wupon their
general function, e.g. I1/0 statements are grouped together,

~control transfer statements are grouped tagether, etc. As many

details as possible are covered, but it is advisable for the
reader to look at listings of the code to completely wunderstand
how each statement is executed.

4.3.6.1 Input / Dutput

All of the input / output statements are handled within the
FLMGR assembly of BASIC. This section has all I/0 statements
broken down into either internal I/0, screen or keyboard, and
external I1/0, device or file.

PAGE 49 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

4.3. 6. 1.1 Screen / Keyboard

I/0 to and from the screen and keyboard via the ACCEPT,
INPUT, LINPUT, PRINT and DISPLAY statements of BASIC.

Print Statement

The print—statement can be used to do I/0 to either a
device or to the display, functioning in a manner similar to the
display—statement. Execution of the print—-statement begins by
checking to see if it is I/0 to a device or to the screen. I# it
is to be output to a device, the PAB is set up and some flags
are set to indicate that, later on, when the output is to be
actually done, that it is to go to a device. I1f the output is to
the screen, the routine INITKB is called to intilaize the screen
for output and to set some flags to indicate that when the
output is to actually take place it is to go fo the screen.

Control then #flows into a global loop which outputs each
print—item in the print-list wuntil the end of the line is
reached. Inside +the loop, a check is made to see if a
print—separator preceeds the next print—item in the list. If so,
the print-separator is handled in is own particular manner;
comma skips to the next field, colon to the next line, and
semi~colon to the next column or location. After the print
separator is evaluated control flows to the bottom of the global
loop. If a print—-separator is not present a check is made to see
if a reference to the tab function is present. If a reference to
the tab function is present, it is evaluated and control flows
to the bottom of the global loop. If a reference to the tab
function 1is not present, control flows into the code which
parses the expression and outputs it

After the expression is parsed, a check is made to see if
output is being done to an internal—type file (does not include
output to the screen), and if so, numeric values are placed into
eight-byte strings and explicit strings are left as they are.
Finally. a check is made to see if a string or numeric is being
output. If a string is being output, it is output using OSTRNG. -
If a numeric 1is being output, it is converted to a string and
output, also using OSTRNG. OSTRNG is a routine which outputs any
pending records to a device and then takes care of outputting
the <current item. It ‘chunks’ up any items which are too long
for the device or screen, repeatedly putting out as many records
as necessary to get the entire item out.

After the print—item has been output., a check is made to
see if a print-separator or an end-of-statement occurs next,
and, if neither 1is present, an error 0CCUTS. It a
print-separator is present it is handled and the entire loop is
repeated until fhe end—-of-statement is reached. When the
end-of-statement is reached, an XML CONT instruction is executed
to return to the statement dispatcher to process the next
statement or to return to top—level.

PAGE S0 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

In pseudo—~code, the entire execution of the print and
display statements can be described as follows, with the label,
PRINT, being the entry—point for the print-statement and the
label, DISPLAY, being the entry point for the display-statement.

DISPLAY INITIALIZE_SCREEN
EVALUATE_OPTIONS
GOTO PRINT1
PRINT IF DEVICE-OUTPUT THEN
INITIALIZE_PAB
ELSE IF SCREEN
INITIALIZE_SCREEN
END IF
PRINTI REPEAT
IF SEPARATOR THEN
HANDLE _SEPARATOR
ELSE
IF TAB THEN
HANDLE _TAB
ELSE
PARSE_EXPRESSION
IF INTERNAL-FILE-TYPE THEN
IF NUMERIC-ITEM THEN
CONVERT_TO_8-BYTE_STRING
END IF
END IF
IF STRING-ITEM THEN
OSTRNG
ELSE IF NUMERIC-ITEM
CONVERT_TO_STRING
OSTRNG
END IF
IF NOT SEPARATOR THEN ERROR
HANDLE_SEPARATOR
UNTIL END-OF-LINE
CONT

Display Statement

The display—statement 1is executed in exactly the same
manner as a print-statement to the screen except that additional
options are available to allow for erasing the screen, random
access to the screen, the issuvance of a "beep" and limitation of
the output field size.

Execution of the display-statement begins by initializing
I/0 for output to the screen. After I/0 has been initialized for
the screen, the possible options are checked for, evaluated and
finally the information to be displayed is placed on the screen.
Note that weach option may appear in a single display-statement
only one time. The code which handles each clause first checks

PAGE 51 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

to be sure that the clause has not already been used once and if
it has not, it is evaluated, otherwise, an error occurs. Each
clause handler also sets a flag after the <clause has been
evaluated to indicate that one occurrence of the clause has
already appeared. The erase-—all option is the +first one
evaluated. I# the keywords, ERASE and ALL: appear in the
display-statement, the screen is cleared and a flag is set to
indicate that the erase-all option has been used and control
returns to the top of the option evaluation routine and checks
for another option. After checking for an erase-—all clause, the
beep-clause is checked for and if it is present, a flag is set
to indicate that a beep-clause has been used and control again
returns to the top of the option evaluation routine. After
checking for a beep-clause, the at-clause is checked for. If it
is present, the row and column numbers are evaluated, placed in
the ranges of 1 to 24 and 1 to 28 respectively and the correct
screen address is calculated. Again, a flag is set to indicate
that an at-clause has been wused and control returns to the
beginning of the option evaluation routine. After checking for
the at-clause, the size-clause 1is checked for and if it is
present, is evaluated and saved for later use.

The flags which are set when the options to +the display
statement are evaluated are set in the. CPU memory location
PABPTR. When screen I/0 is specified PABPTR is not used to point
to a PAB since none is used but is used to indicate the options

selected. Six bits in PABPTR have been assigned meanings as
shown below.

BIT MEANING

Don‘t blank current field (negative size)
Validate used (accept—statement)

(unused)

(unused)

Size—clause used

At-clause used

Beep used

Erase-all used

O NWHU>N

Once all of the possible options for the display—statement
have been evaluated:, control flows into the code which handles
the print-statement, as the display—-statement and a
print-statement to the screen function in exactly the same
manner. A complete description of how the print-statement is
executed may be found in the preceeding section.

Using Clause

The wusing-clause is an option which is available for both
the display and print statements. Evaluation of the using—-clause
occurs by first picking up the format information and then using
that information in outputting the specified values.

3

PAGE 52 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

The format information may be referenced in either of ~ two
ways. First, an image-—-statement may be used and the line number
of the image-statement may be referenced in the using-clause. In
this case, the routines which are normally used in the searching
and evaluation of read and data-statements are wused to search
for and read the format specification. If an image statement is
not used, the format information can be supplied by the use of a
string expression following the using keyword. In this case, a
standard parse is done to get the format string for use in
specifying the format of the output.

After the format string has been picked wup, a ‘“working"
copy of it is created. This ‘“working" copy will eventually
become the output string after the necessary string and/or
numeric values have been parsed. This copy is used to count the
number of number—signs supplied to indicate the field to be used
for the output information.

In the case of numerics, this includes beoth the digits to
the left of the decimal point and the digits to the rtight of the
decimal point. Also, in the case of numerics, the number of
places needed for the displaying of the exponent <(circumflexes)
are counted and the necessity of including an explicit sign is
checked for. The numeric value to be output is then parsed and
it is converted into a string by using the information gathered
in examining the format string. The converted number is then
copied into the "working" copy of the format string.

In the <case of outputting strings with a particuluar
format, the string to be output is copied into the ‘“working"
copy of the format string, left—justified, with spaces filling
to the right of the string if the format string is longer than
the output string. If the string to be output is too long for
the format specified, the "working™ copy string is filled with
asterisks to indicate that the field is not large enough for the
string to be output properly.

After the entire ‘“working" copy of the format string has

been converted into the output string, it is output to either
the screen or to the device specified. ‘

Input Statement

The input—-statement 1is separated into two separate parts
One part provides for input from the keyboard and the other
provides for input from a device. This section describes input
from the screen.

After it has been determined that input in coming from the
keyboard (no file—~clause or file number O) a check is made to
insure that there is enough room on the screen for the question
mark to be placed on the screen and if there is not the screen
is scrolled to create room. The question mark prompt is then

PAGE 53 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

displayed.
!

Next the input statement is scanned to pick up all of the
variables which are to receive values and to push the special
entries for each (created by a call to SYM) onto the stack.
After all of the variable entries are on the stack, the rest of
the 1line on the screen from which the input is to come is
cleared and the prompting tone is sounded. The routine, READLN,
is called to read the input line from the screen and to allow
all of the editing features for the input line. After the line
has been read, it is crunched by calling the routine SCDATA,
which is a subroutine used by CRUNCH to crunch data-statements.
Crunching an input line is essentially the same as crunching a
data-statement. After the line has been crunched, the screen is
scrolled and a check is made to see if the number of arguments
input matches the number variables in the input—-statement. If
the number of arguments does not match the number of variables,
a warning message is issued and the input is tried again.

At this point an assignment loop is entered which rescans
the input line, in case a subscript is being input, and the
values read from the screen are assigned to the variables in the
input list until the end of the input—-statement line is reached.
When all of the wvalues have been assigned, an XML CONT
instruction 1is executed to return to the parser. The following

diagram describes, in general terms the structure of the input
statement.

FPAGE 54 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80
ot e e e +
i INPUT |
o s e e e e +
H
- Y
. / \
/ \
Device / Device \ Screen
FL o e e \or Screen/—————m——m————————— >+
{ \ I/0 / H
Y \?/ v
/ \ e e e o o e e i e +
/ \ tAccumulate |
/Internal/\ Display { Variable |
\ Display /——————mm———= + H List i
A 4 ! Fr———————— +
\ 7/ v o e e >
tInternal +————m—————— + v
o o e e — > v tAccumulate ! ' Fom e ———— +
Y/ { variable | H { Accept H
: o e + ! types ! : ! data from !
i tGet nexti o o e e e e o e e + H i keyboard |
H tvariable! H H o e e e e +
H o ——————— + Vv H H
H H o e e e e e o + { V.
i Vv { Read next | H Fo e -+
! e e e e + i record H H ! Crunch !
' i Read | P e e + H tinput line |
: t value | ! ! et e et e e e o e +
] o ——— + v F USRS !
i H o e e e o e e + i{Warning | \%
H v { Crunch e + / N\
H Fom——————— + ! record(s) | ! /- \
! ! Assign ! e + ! No / Correct \
H t value | L FLmm——\ # fields/
H F e e + Vv AR 4
| ! + ' - N/
! \% tCount # of | ! Yes
! / N\ { fields to | H
! /More \ { set pend. | i
{Yes / to A\ +————————— + i
+L{~--\" read / ! !
N7/ v Vv
N/ +L—-— ——— -+
1 No v
Y o e e i e e e e e + e ——————— +
o e e e e + t Verify ! t Assign | He—meee—— +
iContinue! ! data/var. {->! wvalues |->iContinue!
P + H types i | to vars | +-———r——o +
] + + - +
Figure 4. 3. 6.1. 1.1

PAGE 55

Revision 3.0

Product 359 BASIC Interpreter ' 30JUN 80

Linput Statement

The linput statement is used to take input data from either
the keyboard or an external file without any interpretation of
the data at all and assign it to a string variable. Execution of
the statement involves first calling a subroutine to take care
of initializing for input from the keyboard. If a file number is
present then input is initialized from the particular file. In

the case of file I/0 the file type of the device must be display
OT an error 0CCUTS.

The information about the wvariable specified in thé
statement is accumulated and the variable is insured to be a
string variable.

If the linput is directed to come from a device and a neuw
record must be read, then it is read, put into a string and
assigned to the variable. If a partial record is available (left
by execution of a previous INPUT statement) then the screen
offset 1is removed from each character in the record, the value

is copied into a string in the string space and assigned to the
variable.

If the linput is directed to come from the keyboard, then
any input prompt is handled and the READLN routine is called to
accept the input. Then the screen offset and all edge-characters
are rvemoved from the input line and the resulting string is
assigned to the variable.

Accapt Statement

The accept-statement is used for inputting data from the
screen(keyboard) at a random location. It also provides for the
validation of the input data, the issueing of a "beep" from the
tone generator, restriction on the size of the input field
allowed and the erasure of the entire screen.

Execution of the accept-statement is done by first «calling
the same routine used by the display-statement to evaluate the
common options, at, beep, size and erase-all, and then checking
to see if a validate-clause is present. If a validate-clause is
present, it is evaluated by first looking for the verification
keywords, UALPHA, NUMERIC or DIGIT and if any or all of the
keywords are present, special flag bits are set +to indicate
which of the verification keywords have been specified. Also, if
any strings are supplied which contain characters that may also
.be accepted, they are parsed and the string entries which are
returned by the parser in the FAC are pushed onto the stack and
saved for validation later on. The process of looking for the
keywords and/or strings 1is repeated until the end of the
validate list is reached (a right—-parenthesis is encountered).
Thus, the options may appear in any order within a statement.

PAGE 56 Revision 3.0

Product 35% BASIC Interpreter 30JUN 80

The READLN routine is then called with the appropriate
flags set to indicate it must do validation of the input data.
READLN then «checks each character entered against the set of
legal characters and if in illegal character is entered, it is
rejected. After the input line has been read (validated also),
the value is assigned to the variable specified. The screen is
then scrolled, if necessary, and control returns to the parser.

4.3.6.1.2 Device / File

An extensive device/file 1/0 system is supported by the
Product 359 BASIC interpreter. The file management interface 1is
discussed in detail in the Home Computer File Management
Specification and the reader 1is referred to that document
Discussed here, briefly, are the Peripheral Access Blocks (PABs)
and how the OPEN, CLOSE, OLD, and SAVE statements are executed.

Peripheral Access Block Definition

All DSRs are accessed through a Peripheral Access Block
(PAB}. The definition for these PABs 1is the same for every
peripheral thus providing a device—independent I/0 interface
The only difference between peripherals, as seen by ' BASIC, is
that some peripherals will not support every option provided for
in the PAB.

All PABs are physically located in VDP RAM. They are
created before the OPEN call, and are not to be released wuntil
the I/0 has been closed for that device or file. '

Figure 4.3.6.3.1 shows the layout of a standard PAB with
the additions to it by the interpreter to manage the PABs in
memory (first eight bytes). The PAB has a variable length,
depending upon the length of the file descriptor.

PAGE 57 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

BASIC=~2
PAB—~—=2
The
below.
Byte
0
1
2:3

_______________________________ — ——p

0,1 !

LINK TO NEXT PAB IN CHAIN i

2 H 3~—~- ;

CHANNEL NUMBER i INTERNAL OFFSET H

4 i 5 i

170 OPCODE ! FLAG / STATUS i

6, 7 H

DATA BUFFER ADDRESS H

8 . H

LOGICAL RECORD LENGTH | CHARACTER COUNT !

10, 11 H

RECORTD NUMBER '

12 t13 H

SCREEN OFFSET i NAME LENGTH i

14, . !

]

Figure 4.3.6.1.3.1 BASIC PAB Layout

meaning of the bytes within the PAB are described

Meaning

1/0 opcode - Contains opcode for the current
1/0-call. A description of the valid opcodes
will be given later.

Flagbyte/status — All the information the system
needs about file-type, mode aof operation,
and data-type, is stored in this byte.

Data buffer address — Address of the data buffer
the data has to be written to or read from.

PAGE 58 Revision 3.0

Product 359 BASIC Interpretér 30JUN 80

4 - Logical record length - Indicates the logical
record length for fixed length rTecords, or
the maximum length for a variable length
record (see flagbyte}.

S - Character count - Number of characters to be
transferred for a WRITE opcode, or the
number of bytes actually read +for a READ
opcode (not equivalent to INPUT and QUTPUT

mode}.
& 7 - Record number - Only required if the file opened
is of the relative record ¢type. Indicates

the record number the current I/0 operation
is to be performed wuwpon (this limits <the
range’ of record-numbers to O — 327467). The
highest bit will be ignored by the DSR.

8 - Screen offset — Offset of the screen chéracters
in respect to their normal ASCII value.

? - Name length - Length of the file descriptor
following the PAB.

10+ - File descriptof — Devicename and, if required.,
the filename and options. The length of this
descriptor is given in 9.

BASIC PAB Additions

Aside from the control information contained within the
PAB, BASIC adds four (4) more bytes to the top of the PAB for
specific BASIC related control information.

The additional four bytes contain control information BASIC
needs for its internal PAB linkage structure. The PABs within
the BASIC control structure, form a linked list. The last PAB in
the list has a zero ("0O") link.

The first 2 bytes in the BASIC PABs contain the link to the
next PAB. The next byte contains the actual BASIC channel or
file number (1-255). The next byte contains the offset of the
current data-pointer within the data-block.

The offset indicated in the third byte of the DBASIC PAB

indicates the position of the current data pointer within the
data buffer given in bytes six and seven of the PAB. If byte

PAGE 59 . Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

three equals zero, the current data buffer is "blank", i.e. if
in "read" mode, a new buffer has to be read in before any

further processing; in "write" mode, the entire buffer is still
available for data storage.

If byte 3 is non-zero, it contains an “"offset" within the
data buffer. Added to the start address of the data buffer, it
will give the actual address of the first data-byte to be read
or written. This 1is only the case if there are pending print
operations or the most recent INPUT ended on a comma. In all
other cases, byte 3 will be zerao.

1/0 Operations

The wvalid optodes which may appear in a PAB are shown in
figure 4.3.6.1.3.2. The following sections describe the general
actions invoked by an I/0-call when the open, close, load and
save I/0-opcodes are used.

Opcode Meaning
00 OPEN
01 CLOSE
02 READ
03 WRITE
04 RESTORE/REWIND
05 LLOAD
06 SAVE
07 DELETE
08 SCRATCH RECORD
09 - BTATUS

Figure 4.3.6.1.3.2 1/0 Opcodes

OPEN

The OPEN operation should be performed before any data
transfer operation. The +file remains open wuntil a CLOSE
operation is performed. The mode of operation for which the file
has to be opened should be indicated in the flagbyte of the PAB.
In case this mode is UPDATE, APPEND or INPUT, the record length
will be returned in byte 4. Any given non—zero record length
will be checked against this stored 1length. For OUTPUT the
record length can be specified, or a default can be used by
specifying record length zero.

Execution of the OPEN-statement begins by picking up the
BASIC channel number or Logical Unit Number (LUND). Once it does

PAGE &0 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

this a temporary PAB is built in the CPU RAM until the device
can be verfied open, at which time the PAB is copied into the
VDP RAM and made permanent. When the framework for the PAB has
been done, the options are parsed and put into the PAB to
customize it for the particular device being opened. At this
point, the Device Service Routine (DSR) is «called to actually
open the device or file. If the DSR does not encounter an error
the PAB is made a permanent structure and control returns to the
parser via the execution of an XML CONT instruction.

CLOSE

The CLOSE operation informs the DSR that the current 1I/0
sequence to that DSR has been completed

Execution of the close operation is a relatively simple
operation. The first thing done is the BASIC channel number is
picked wup and the correct PAB is found in the PAB list. If the
device was opened for output, any pending output that may exist
is output. The close op-code or the delete op-code (if delete is
specified) is placed in the PAB and the DSR is called. After the
CLOSE operation has taken place, the PAB is deleted by a routine
called DELPAB. This removes the PAB +from the PAB list and
releases the memory so that it may be allocated for another PAB,
a symbol table entry or the string space.

If a file or device is opened for OQUTPUT or APPEND mode,
and EOF (End Of File) record is written to the device or file,
before disconnecting the PAB.

oLD

AL

The OLD operation loads an entire memory image from an
external device. All of the contiol information BASIC needs is
concatenated to the program image ®efore calling the DSR to save
the program so that when the program is loaded with the OLD
command all necessary information is available to the
interpreter.

The OLD operation is a stand alone operation, i.e. the OLD
operaftion can be used without a previous OPEN aperation.

For the OLD operation, the PAB <contains the following
information

Bytes 2,3 : Start address of the memory dump area
Bytes 6,7 : Number of bytes available.

Aside from the I/0 opcode and the file descriptor. no other

PAGE &1 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

PAB-entry is required for the OLD operation.

Execution of the OLD command involves three phases. First,
the PAB is built. Then the DSR is called to actually read in the
program from the device specified by the name. After the program
has been vread into the VDP RAM the starting and ending line
number table pointers are retrieved from the memory image and
are used to locate the program in memory and fix all of the line
pointers within the 1line number table. After this is all

completed control returns to top—~level to await input from the
user.

See the Product 359 BASIC Interpreter Expansion RAM Support
Software Specification for information on how a program is
loaded into the expansion memory.

SAVE

SAVE is the complimentary operation for OLD. It is used for
writing memory images to a device or file. All necessary control
information 1is 1linked to +the memory image, so that the
information plus program image use one contiguous memoTy area.
As with the old operation, only a small part of the PAB is used.
Aside from the usual information (170 opcode and
filedescriptor), the PAB contains :

Bytes 2,3 : Start address of the memory areaa.
Bytes 4,7 : Number of bytes to be saved.

Execution of the SAVE command involves first checking to
see if the program is to be saved in the MERGE format. I+ the
MERGE option is specified then the file is opened and each line
of the program is written to the file, individually, with the
line number, length and text all appearing in a single record.
The +first record written includes control information to
indicate that this file is actually a program saved in the MERGE
format. After all of the program lines have been written to the
file, the file is closed and control returns to top level.

If a program is to be saved in the normal program format
the <correct PAB 1is built and the starting (STLN) and ending
(ENLN) line number table pointers are appended to the program
image in the VDP RAM so that they can be saved also. A
“checksum" is created by XORing the STLN and ENLN pointers
together is also created to be saved with the program image. A
check is made to see if the program 1is to be saved 1in the
protected format and, if so, this “"checksum" is complemented so
that when an attempt is made to load the program from the device
the fact that it is protected can be detected. Note that by
doing this a program saved in the protected format cannot be
loaded by the 99/4 BASIC because the ‘“checksum" will not be

PAGE &2 Revision 3.0

Product 359 BASIC Interpreter 30JUN B8O

correct and an error will occur. When all ¢this has been
completed, the DSR is called to actually write the memory image

to the device. Control then flows back to top—-level to await a
command from the user.

See the Product 359 BASIC Interpreter Expansion RAM Support
Software Specification for information on how a program is
loaded into the expansion memory.

MERGE

The MERGE command is used to load a program saved in the
merge format back into the computer’s memory as if the program
were being entered from the keyboard. Execution of the MERGE
command involves first opening the file and checking to see if
it is a program saved in the merge format. If it is not, the
file is closed and an error occurs. If the file is a program
saved in the merge format, then each line (record in the file)
is read and then edited into the program by calling the EDITLN
routine, sequentially, until the entire file has been read. When
the entire program has been edited into memory, the file is
closed and control returns to top level.

4.3.6.1.3 READ / DATA_and RESTORE

READ and DATA statements allow a BASIC program writer to
store data in a program and retrieve it easily, using a minimum
of space. In order to properly handle READ and DATA commands the
interpreter, when a program is being scanned, the static scanner
looks for the first occurrence of a DATA statement and, if one
is found, the address of the first item of that DATA statement
is sftored in the global variable DATA. The address within the
line number table of the line in which the DATA statement has
been found is stored in the global variable LNBUF, In case no
DATA statement 1is present in the current program segment, the
high order byte of DATA is set to zero (0). Thus. when program
execution actually begins the data pointers are already set up

properly and nothing additional needs to be done before
execution can begin.

Each READ statement reads one or more items from a DATA
statement. Items are separated by commas. If, during a READ, an
end—-of-statement is encountered, the variable LNBUF is used to
scan subsequent program lines searching for another DATA
statement. If another DATA statement is encountered, the DATA

pointer is set up for that particular DATA statement and the
READ is completed

After all DATA statements in the program have been used,
the high byte of DATA is set to O, indicating that no more data

PAGE &3 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

is available. Execution of a READ statement after this will
result in an error. :

The DATA pointer can be reset to any DATA statement within
the program segment by using the RESTORE command. In the RESTORE
command an optional line number can also be specified. This line
number indicates the line at which the DATA scan is to start. If
the 1line number specified is not contained in the program, the

RESTORE defaults to the first line in the program which contains
a DATA statement.

4.3.6.2 Assignment

There are two separate types of assignment statements,
numeric assignments and string assignments. Assignment of values
to wvariables is handled by the ASSGNV (assign value) routine
which is located in the BASSUP assembly of BASIC. In preparation
for the use of ASSGNY, SYM (symbol name) and SMB (symbol wvalue)
must also be called to prepare the variable for assignment. SYM
serves two functions. First, it picks up the variable name from
the statement text, advancing the text pointer, PGMPTR, past the
name and searches the symbol table for the variable. Second, it
places the address of the symbol table entry into the FAC. If at
any time during the name accumulation or symbol table search an
erTor QCCuUTs, the operation is aborted and an error message is
generated. SMB is then wused ¢to find where the wvalue being
assigned to the variable must be placed

In the case of numeric variables SMB must caomprehend the
fact that the values for numeric variables may not reside within
the symbol table but may be contained in the expansion RAM
peripheral. It does this checking the first byte of RAMTOP to
see if the expansion RAM is present. It then begins with either
the address of the value space within the symbol table or with

the address of the value space in the expansion RAM. I an
element of an array is being referenced it then calculates the
correct offset into the wvalue space by evaluating the

subscript(s). SMB places the address of where the value is to go
into FAC+4. An identification byte of 200 is added in FAC+2 to
~indicate to ASSGNV that the symbol is a numeric. The 8-byte FAC

entry, after SYM and SMB have been called for a numeric variable
looks like:

+ — —— - ——— +
iPtr to {200 | iPtr to H H
IS, T. entryi>s5 ! tValue space ! i
+ e e e e e e e e o e e e e e +
Fac FAC+2 FAC+4 FAC+6

Numeric variable entry after SMB
Figure 4. 3. 6.2. 1

PAGE &4 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

In the <case of a string wvariable SMB must construct a
somewhat different FAC entry due to the fact that a pointer is
needed to the string value. The entry is built by putting the
pointer to the value space into FAC and FAC+1 and putting the
pointer to the string in FAC+4 and the length of the string into
FAC+6A. Finally, the ID byte of 265 is added to the entry to
identify it as a string variable entry resulting in an entry for
a string varaible that looks like:

e e e e e et e e e et e e e e e e e e +
iPtr to {265 | { Pointer it String |
tValue space! H { to String | Length |
e e e e e e e e e e o e e e e e +
FAC FAC+2 FAC+4 FAC+4

String variable entry after SMB
Figure 4. 3. 6. 2. 1

After the FAC entry has been constructed it must be pushed
onto the value stack and the value to be assigned must be placed
into the FAC. The following sections describe what unique things
must be done in order to assign the value to the variable
depending upon whether it is a numeric assignment or string
assignment.

4.3 . 464.2.1 Numerics

ASSGNYV first pops the top entry off of the stack into the
ARG area of the FAC. This entry should be the entry constructed
by &BYM and SMB. If ASSGNY determines that a numeric argument is
being assigned to a numeric wvariable it copies the eight ©bytes
of the FAC into the symbol table at the location specified by
the pointer picked up from ARG+4,

PAGE 45 Revisiaon 3.0

Product 359 BASIC Interpreter 30JUN 80

{12 ‘
+— - ——————————— +
H Pop i
T — + !
{ISTIOOQIVP! H e
e e + ARG \% FAC
H ' Y - - + o e e e e +
H S H 18T {00 1vAaL | { { Value {
H T H + —— + e e e e e e e e e m +
H A H H H i
! c H + { -+ H
H K H H H H
H H H Y i
e + H +—- —— + H
H {00 i lent i
H +- - ——— {2YiAssigned
‘ H H Link H H
H G e e e e e + H
H ! Name Pointer H H
H F———— —_—— —— !
H + - -+ 1
+=—2 Value HE -+
e e e e e +

- Figure 4. 3. 6.2. 1.1

After the value has been copied into the correct place in
the symbol table, ASSGNV returns to its caller.

4.3.6.2.2 8trings

ASSGNV first pops the top entry off of the stack into the
ARG area of the FAC. This entry should be the entry constructed
by 8YM and SMB. I+ it is not, an error occurs. If ASSGNV
determines that a string argument is being assigned to a string
variable it must do several things to correctly make the new
assignment. First, it checks to see if the variable currently
has a wvalue assigned to it. If it does it must free the string
assigned to it so that it can be garbage collected at a later

time. Then, if the string to be assigned is currently assigned
to a symbol (the FAC entry indicates that the string is not a
temporary), a new string is created that exactly matches the

string to be assigned and this new copy is assigned to the
symbol pointed to by the pointer in ARG.

PAGE &6 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

{1%
e e +
H Pop H
o e e + H
ISTI6S5IVPIL | b
o e e + ARG Vv FAC
H H + e e e e e e e +
i 8 H 8T 165 VAL | Len | (0OuwniéSiPtr iLen !
H T t o e et e e e e + e—— - —
H A H ! H H
H C H Y v i +
H K HIEE S8 o e e e >+ +->IPERMiIString!
H HEH H S +
O + ! e - - d i iNew
i {10 {Dimi leni ! H {3%iCreated
L ittt + H H Y
! i Link H | L i +
L e + H +->1TEMP !String!
i { Name Pointer { t e e e +
I Rt ettt Lt + : v
A ~ i {4 lAssigned
vV +m———— - + H i
+=2>1 WValue Pointer e e e +
+—— - + H
i v {2} Fomm +
e il et >i01ld String!
Freed o o e e e +

Figure 4. 3. 6.2.2. 1

After the new string has been assigned to the symbol table
entry, ASSGNV returns to its caller. Additional information on
strings appears in Section 4.3 3.2

4.3.6.2.3 LET

Assignments ¢to variables may take place in many ways but
the let-statement is the primary means. Execution of the
let-statement is really quite simple. Initially, a counter,
which will indicate how many variables are to be assigned the
value to the right of the equal sign. Next, the symbol routine,
8YM, is called to get the pointer to the name of the symbol
which is to receive the new value and to search the symbol table
for its entry. SMB 1is then called to get the pointer to the
cerrect place in the variable‘s value space. The entry created
by S8SYM and SMB in the FAC is then pushed on the stack and the
counter of the number of assignments to be made is incremented.
A check is made to see if a comma token is present, which would
indicate that another variable is to be assigned a wvalue, and,
if it is, it is skipped and the SYM, SMB process is repeated
until an equal sign is encountered. When the equal sign is

PAGE &7 Revision 3.0

A e A U S RN B A T O A Y SIUATUAON T OU

encountered, the wvalue to be assigned to the variable(s) is
parsed.

Another loop is then executed which repeatedly assigns the
value parsed to the variables by wusing the ASSGNV routine
described in the preceeding two sections and decrementing the
counter set up when the left-hand side of the let—-statement was
scanned until all of the variables have been assigned the neuw
value. There 1is one minor difficulty arising when multiple
assignments to string variables are being made because multiple
copies of +the string parsed must be created. This condition is
taken care of by making the FAC entry for the string being
assigned look like a symbol-to~symbol assignment of strings is
taking place to the ASSGNV routine so that a neuw copy of the
string is created. This is achieved by changing the two pointers
in the FAC which indicate where the string comes from to make
the string that is assigned to the next variable in the list be
the one which was most recently assigned. Figure 4.2.6.2. 3.1
describes this situation in visual terms.

A%, B$, C$="HELLO"

Chm—m e e >"HELLO" {source string)
v

B$———————— >UHELLO" {rcopy from C$’s stringl}
\

Afm—— e 2>"HELLO" {copy from B%$’s stringl}

Figure 4. 3. 6.2.3.1

In this case the source string is assigned to the variable C%.
The FAC entry is modified so that it now indicates that the
string to be assigned to B% is the string which belongs to C$%.
ASSGNY is called again and it creates a new string because the
source string indicated by the FAC entry says that a
symbol—-to-symbol assignment of strings is about to take place.
When ASSGNV returns, the process is repeated by changing the FAC
entry so that it indicates that the string to be assigned to A%
is the string which belongs to B%, and so on. This repeats until
all of the variables specified have been assigned the new value.

4.3.6.3 Control Transfer

The BASIC interpreter normally executes the statements of a
program in a sequential manner. When it is finished executing
one statement, control flows to the next statement in the
program unless one of the statements described in this section
dictates otherwise. The statements described here can cause

PAGE 68 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

unconditional branching, conditional branching, branching with
return, and looping to occur.

4.3.6.3. 1 OTO

The execution of a goto-statement consists of two parts.
First, is the identification of the goto~statement and second is

the actual branching to the statement specified by the line
number provided.

Identifying a goto—statement is somewhat complicated by the
fact that it can have two distinct forms, GOTO and GO TO. When
the GOTO form 1is used the address of the statement handler is
picked up directly from the statement table. In the case of the
GO TO form: a check must be made after the GO has been looked up
in the statement table to see if the token following it is a TO
or a SUB. If a TO is found after the G0 then control +flows ¢to
the same location as in the case of the GOTD.

Finding the 1line to resume execution at is handled by a
routine which is utilized by the goto—statement, the
on-goto-statement, the gosub-~statement, the on—-gosub-statement
and the then and else~clauses of the if-then—-else~-statement
Notice that the goto-statement 1is a specialized case of the
on-goto-statement without the index. It should be obvious to see
that if the index for a goto-statement can be assumed to be
zero, then the goto-statement can be treated exactly as an
on-goto—-statement after the index has been evaluated. This 1is
exactly what is done by the interpreter. A dummy index (R3) is
set up and from here the statement is executed in exactly the
same manner as the on—-goto-statement described in section
4.3.6.3.3. Refer to that section for how the goto—-statement is
completed.

4.3. 6. 3.2 GOSUB _and RETURN

The gosub—statement is handled in a very similar manner to
the goto-statement. Initially, the same procedure is used to get
to the gosub statement handler as is used by the goto—statement
(see preceeding section). After control has rTeached the
gosub—statement handler, a special stack/FAC entry is built
which saves the current line number table pointer (EXTRAM) so
that execution may resume at the statement following the
gosub-statement when a return-statement is executed. A dummy
on-index is created just as with the goto-statement and control
flows into the common <code wused by the goto, on—goto and
on-gosub statements. See the preceeding and following sections

for how execution of the gosub—statement is completed and for
more information.

PAGE 49 Revision 3.0

Product 359 BaSIC Interpreter 3JOJUN 80

Execution of the return-statement involves popping an entry
off of the value stack, looking for a gosub entry, If a gosub
entry is not found, succeeding entries are popped off until one
is found or until VPOP attempts a stack-underflow which causes
an error. I+ a gosub entry is found, EXTRAM and FGMPTR are
restored from the entry and execution resumes there by branching
to NUDEND to get the next statement.

4.3.6.3.3 ON_GOSUB and ON GOTO

The on-goto and on—gosub-statements are handled in almost
the exact same way as the goto and gosub-statements,
respectively. The on-goto and on-gosub statements are the

generalized cases of the goto and gosub statements alluded to in
the previous twe sections.

When the on-statement token is encountered control flows to
a4 section of code which first checks to see what type of an
on-statement is being executed. If an on-error, on-warning, or
on—-break statement isg being executed it is handled by the

appropriate code as described in sections 4. 3. 8. 4, 4.3.8.5 and
5.1.3, Tespectively,

If an on—-goto or on-gosub statement is being executed,
control flows to the code which evaluates the index, converts it
to an integer and then proceeds into the code which picks out
the goto/gosub portion of the statement, The index for the
statement is maintained in a register (R3) and when the code
which 1looks for a particular line in the program is entered it
usas the index to select the correct 1line number of the
line-number -list by using the following method. It first checks

for the special line-number token. If one is not present an
error occurs. If one is present, the index is decremented to see
if the correct line number has been found. I+ the <count is

greater than zero, the correct 1line number has not been
encountered and the process is repeated until the index reaches
zero, indicating that the correct line has been found. Once the

4.3.6.3.4 FOR_and NEXT

The for-to-step statement and the next statement are
dafined in conjunction with each other, The physical sequence of
statements beginning with a for-to-step statement and ending
with a next statement is termed a for-block. For-blocks can be
physically nested, (i.e., one can contain another), but they
cannot be interleaved (i.e., if a for-block contains any portion
of another for~block, it must contain all of the second block).

PAGE 70 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

Physically nested for-blocks cannot use the same control
variable.

FOR Statement

When a for-statement is encountered, the statement is
processed, left—-to-right, and a stack block is generated, which
is left on the stack to picked up by the next—-statement. The
stack—-block has the form of:

o o e e i e oo e e 2 +
tPtr. to | 2467 iValue { BUFLEV |
1. T.ent | H {SpacePtr! |
e e v o e e e e e e e e e e e e e e +
{ Return | Return | '
! EXTRAM | PGMPTR | H
e e e e et e e o e et i +
| Increment H
e e e e e 8 o e e e +
| Limit i
P e e e e +

The code which generates the stack block is fairly complex in
its manipulations of the stack and is complicated by the fact
that in order to maintain ANSI compatibility, the initial valve
must be maintained while the limit and optional step values are
parsed. A step-by-step series of diagrams follows the
development of the stack—-block below. It is recommended that the
reader have a copy of the Assembler listing when following the
development below.

The for—code 1is entered with RB containing +the first
character of the index symbol’s name. The routine 8SYM is called
to get the pointer to the symbol’‘s symbol table entry. The FAC
entry returned by SYM now looks like:

tPtr. tol
{5 T.ent!

Next, 8MB is called to get the pointer to the symbol’s value
space. The FAC entry now has the form of

Fommm——— et +——— —t e +
iPtr. tol iValue i H
iS. T.ent i {SpacePtr! H
+- e e e e +

The header entry for the block is then completed with the stack
for—-block identification, 267, and BUFLEV 1is added to allow
checking for crunch~buffer integrity.

Next, a search of the existing stack entries is made,

looking for a for-block with the same index variable. If one is
found, it is deletedi if not, the stack remains unchanged.

PAGE 71 Revision 3.0

Product 359 BASIC Interpreter

Next,
bytes are
information,
@PSHPRS,

the actual use of the stack begins.

reserved for the 1limit,
and the identification entry is
which

Twenty-four
increment
pushed
pushes the FAC and parses the next value in the

30JUN 80

(24)
and return
via a BL

for-statement. The stack, at the point of the parse, looks like:
P —— o e e Fm————————— +
VEPTR~~—=2{Ptr. to!l 267! tValue { BUFLEV |
i1S. T. ent ! H {SpacePtr! i
+- -+ o e e + ————
When the parse of H Reserved :
the initial value : |
is completed it e et e e e o e +
is, as usual, H Reserved i
returned in the H !
FAC. It is then e e e e e e e e e e e e +
pushed onto the H Reserved H
stack to yield a H i
stack that looks P e e +
like:
e e e e e e e e e +
{ Initial {
{ Value H
o ———— e o e e e +
iPtr. tol 247! iValue { BUFLEV |
i1IS8. T. ent! H {SpacePtri H After some
P ———— et tme —t—— + error checking
i Reserved i is done, the
‘ ' to-value, or
A e e e e e e e - o e e e e e e e + limit, is
! Reserved ! parsed and is
! i returned in the
e et e e e e e + FAC. At this
VEPTR--2 1| Limit H point, the real
{ i stack :
o e e + manipulations

to get the values into the correct positions in
Forty (40) is subtracted from VSPTR to get

the wvalue below the the for—-block. The limit
the stack and the stack now looks like:

PAGE 72 -

begin in order
the stack block.

it pointing at
is now pushed on

Revision 3.0

Product 359 BASIC Interpreter 30JUN 80’

" o o S - s T o o T L 023 Srg Lo U Sl St SO i S Bt O VY M Sl it A it S S ot S A et S8000

Next, the stack
pointer is
reset to the
top of the
stack and the
step wvalue 1is
parsed, if one
exists, or a

-+
Value i
-+
+
i floating point
+
!
-+
i
e

L

- e e e e e s ks e e e s s e S s s e i e S . s

one is put in
the FAC as the
default
increment.
Thirty—-two (32)
is now subtrac-—
ted from the
value stack pointer to point it at the 1limit again and the

increment value is pushed into the stack—block yielding a stack
like:

VBPTR—-2 1 Limit

e et e e e - —— — e e
i Initial !

H Value H

- Fm——————— Bt e e e e o e +

NMow, the remaining tPEr. tol 2671 tValue ! BUFLEV |
stack entry is 1S. 7. entt H iSpacePtr! 1
created by putting P ———— P e e e F +
the current EXTRAM H Reserved b
and PGMPTR in H i
the FAC, o e e o e e e e i o e e e +
VSPTR——-2 1 Increment H

decrementing i) :
the PGMPTR to be e o o e e e e s o i o +
pushed S0 that H Limit !
the next—-statement ! !
can resume in o e e e e e e e e o e e +

the proper place
and the final entry is pushed yielding a stack block of:

PAGE 73 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

o e e e e e e e et e e e e e e e e e + Next, sixteen
' Initial H (16) 1is added
H Value H to the valvue
Fom e —————— P b e e e e o e e e + stack pointer
tPEr. to | 267! tValue ! BUFLEY | to point it at
IS. T.ent | H iSpacePtr! i the initial
R o o e e e e e e e e o e + vwvalue. The
VEPTR-->! Return | Return | H initial value
i EXTRAM | PGMPTR | H is then popped
+- —— e et e e o e + off of the
H Increment i stack into the
H i FAC.
e e e e e s e e e + The initial
H Limit { wvalue is now
H { assigned to the
+- - o o e e e e e + index wvariable

by using ASSGNV. ASSGNV leaves the stack pointer pointing at the
EXTRAM/PGMPTR entry.

Now a check must be made to determine if the for—loop
should be executed at all Sixteen (16) is subtracted from the
stack pointer to point it at the limit. The 1limit is now
compared with the initial value (which is still in the FAC) to
see if the for-loop should be executed by using SCOMPB. SCOMPB
leaves +the stack pointer pointing at the limit. A check is now
made to see if the increment is positive or negative. This
determines the direction that the initial/limit comparison
should be interpreted. If the increment is positive, the initial
value must be greater than or equal to the limit if the loop is
to be executed.

If the loop is to be executed, thirty—two (32) is added to
the value stack pointer to yield the final stack block and the
body of the block is executed. I# the loop 1is not to be
executed, the remaining program text 1is searched for the
matching next-statement. A count (R3) is kept of the number of
for—-statements encountered. It is initialized to one and is
incremented for every for—statement encountered and decremented

for every next—statement encountered until it reaches zero. We
are guaranteed to find a next at the same level as the
for—statement by the check that is made at prescan time. When

the matching next-statement is encountered, the loop variable is
checked to make sure that it is the same as the one used in the
for—-statement. If it is not the same, an error occurs. If it is
the same execution resumes at the statement following the next
statement. Please note that there is no need to +flush the
for-block off the stack because the value stack pointer was left
at the bottom of the for-block by the comparison (SCOMPB) that
was done in determining if the for-loop should be executed.

PAGE 74 Revigion 3.0

Product 359 BASIC Interpreter 30JUN 80

NEXT Statement

The next-statement is executed only in conjunction with the
for-to-step statement which has the same index wvariable. The
next-statement serves in either of two functions. One, it serves
as the end of the for-next loop and causes the index variable to
incremented/decremented appropriately and control to resume at
the for—-statement. Second, it can serve as the end of a skipped
block in the event that a for-next loop is not executed. This

second case has been described in connection with the

for-statement.

The first thing that the next statement does is to pap the
first entry of the for stack-block off the stack. If the entry
popped off is not a for entry, then an error occurs. Next, the

index variable 1is checked to see it - the one in the
next—-statement matches the one in the for-block. If it does not
then twenty—four (24) is subtracted (i.e.. this for—-block is

discarded) form the wvalue stack pointer and the stack is
searched further for the matching for-block.

If the matching for stack-block is found, the next thing to
be checked is the BUFLEV to make sure ¢that the for-statement
wasn‘'t typed in and then lost before the next—-statement was
encountered. If the BUFLEV is doesn‘t match, an error has
ocecurred.

Eight (B) is now subtracted from the value stack ‘pointer to
get it pointing at the increment and MOVFAC is used to get the
index variable’s value into the FAC and the increment is added
to the wvalue, leaving the result in the FAC and leaving the
value stack pointer pointing at the limit. Twenty—four (24) is
added to the value stack pointer to point it back at the top of
the for stack-block and the new value is assigned to the index
variable by using ASSGNV. ASSGNV leaves the value stack pointer
pointing at the line number/line pointer entry.

Eight(8) is now subtracted from the value stack pointer to-

point at the 1limit and do a stack compare (SCOMPB), comparing
the limit on the stack with the current wvalue which has just
been assigned to the index variable. We next check the increment
value ¢to see if it is negative or positive to determine which
direction to interpret the comparison. If the value is outside
of the bound:, we simply continue as the value stack pointer due
to the comparison (SCOMPB) that was done, effectively discarding
the for—-block. If we are within the bound, we add thirty-two
(32) ¢to the value stack pointer to retain the for-block on the
stack. We then pick up the old 1line number table pointer
(EXTRAM) and the pointer within the line (PGMPTR), set them up

properly and go to CONT to resume execution at the beginning of
the for—-loop.

PAGE 75 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

4.3.6.3.5 IF-THEN-ELSE

Execution of the if-then-else—-statement consists of two
parts. First, the expression of the if-clause is evaluated and
second, the «correct section of code to execute is selected and
control flows to it. This can either be a line number to go to
or one or more statements to execute. The expression in the
if-clause is expected to produce a numeric result which can be
either zero or non-zero. Zero is treated as a false value and
any other value 1is freated as a ¢true value. The 1logical
operators described in section 4.3.7.6 produce values of either
zero ov negative one.

After the expression has been evaluated the if-statement
handler checks for a ‘then’ token. If it is present, the value
of the expression is checked to see if it is true and, if it is,
a check is made to see if a line number is present. If one is, a
dummy ‘on’ index is loaded (CLR R3, see sections 4. 3. 6.3.1 and
4.3.6.3.3.) and control flows ¢to the common code used by the
goto and gosub-statements. If a line number 1is not present a
check is made to see if the end—of-line has been reached. If so,
an error occurs. If not, it is assumed that a statement follows
and the current character (R8) is loaded with the
statement-separator token and the token pointer (PGMPTR) is
decremented by one to fake out the parser into thinking that it
has just encountered a statement—separator and must follow
through to the next statement. Control then flows ¢to the
continue routine which will cause the next statement to be
executed. Note that when the statements in the then-clause have
heen executed, an end—-of-line, a tail-remark or an else-clause
must be encountered. CONT has been set up so that it can handle
an else in the same fashion as an end—-of-line

If the result of the expression is false when it is
evaluated, an else—-clause is searched for. Note that a counter
is kept of the number of if-tokens and else—tokens encountered
so that the else-clause which matches the then—-clause is
executed and not an intermediary else—-clause which belongs to an
if-statement which is part of the then-clause. Searching for the
matching else involves searching, token by token, down the line
for an else—token or until the end~of~line 1is Treached. I+ an
else—clause 1is present, control flows into the code described
above which handles the execution of the then-clause.

4.3.6.3. 6 CALL

The execution of the call-statement is one of the more
complex in the interpreter. The problems arrise because of BASIC
subprograms needing to have parameters passed to them. This
section describes how the call statement is executed for both
- BASIC subprograms and for GPL subprograms.

PAGE 76 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

Initially ¢the subprogram name is read and the subprogram
name symbol table is searched to find the subprogram name. I¢
the subprogram is not found then control flows to the code
written in GPL which tries to call the subprogram by calling the
link routine of the monitor which will give an error if the
program cannot be found. If the program is found, the in-use
flag is checked to make sure that an illegal invocation of the
subprogram is not about to occur. If a reinvocation is attempted
an errorT O0CCUTs, I+ the subprogram 1is written in Assembly
Language control passes into it divectly, assuming that the
subprogram knows how to handle any parameters that may be passed
to it. The following information assumes that the subprogram is
written in BASIC.

A check is made to see if there are any arguments. If there

are arguments the following process is used (generally). It is
assumed that each argument is a pass—-by—-reference wuntil
something 1is encountered that says it definitely is a
pass—by—valvue. In the case that the argument is a pass—-by-value
it is treated as an expression and is evaluated accordingly and
then assigned to +the formal parameter. I+ the argument is

determined to be a pass—hy-reference it is checked to see if it
has already been passed once as a parameter into the current
calling program. If so, the symbol table entry is wused to get
back to the actual symbol table entry. The appropriate flags are
then set in the formal parameter’s symbol table entry and its
value space is set as a reference field.

When all of the arguments have been evaluated and assigned
to the parameters the stack entry (see section 4.3.3.1) has been
built, execution proceeds into the subprogram.

Parameter Passing Parameter passage 1is the major feature of
subprograms and there are some very strict conventions which are

followed in order to properly pass the arguments into the
subprogram.

Initially, a check 1is made to see if there are any
arguments supplied in the call-statement. If there are not any,
control proceeds directly into the code which builds the stack
entry, prepares the interpreter for executing the subprogram and
proceeds into the subprogram. MNote that a check is made to make
sure that ¢the number of arguments matches the number of
parameters.

When an argument is encountered in a call-statement it is
assumed to be a pass—by-reference until it can be determined
that it definitely is a pass—-by-value. Pass-by—-value can be
determined when the argument is enclosed in parentheses or is an
expression, in which case there is no chance that a result could
be returned to the calling routine:, as there is no variable to
receive it. When it is determined that an argument is being
passed by value, the symbol or expression is evaluated in the

PAGE 77 Revision 3.0

Froduct 359 BASIC Interpreter 30JUN 80

normal manner. The formal parameter list in the sub-statement is

then scanned to pick up the corresponding formal parameter, the
modes of the argument and parameter are checked for a match,
and, if they match, the wvalue is assigned to the formal
parameter.

The case of pass—by-reference is much more complicated than
passing an argument by value. When an argument is determined to
be a pass-by-reference many things must be checked before the
formal parameter may receive the symbol referred to. The
argument must be checked to see if it was passed by reference

from another program segment into the one that is currently

making a call. I# it is already a pass-by-reference variable, it
must be indirected through to get back to the actual variable.
Note that there will never be more than one level of indirection
to pass through since this convention is used at every level of
subprogram activation. If an array is being passed by reference
the number of dimensions in the argument must be the same as the
number of dimensions in the parameter, I+ the number of
dimensions don‘t match an error occurs. Once the actual variable
has been determined, the formal parameter, corresponding to this
argument, is picked up from the sub-statement and the value
space 1is set to point to the actual’s symbol table value space.
The shared flag bit is then set appropriately to complete the
formal’s symbol table entry.

When all of the arguments have been evaluated, the stack
entry is built and control is transferred into the subprogram.

4.3.46.3.7 SUBEXIT and SUBEND

When a subend-statement or subexit-statement is executed
the stack 1is flushed back to the subprogram entry (see section
4.3.3.1), by using the interpreter variable, LSUBP, getting rvid
of any for-blocks, gosub—~blocks, etc. from the stack. This
leaves the stack in the same state as it was when the subprogram
was invoked. The information in the subprogram—block is then
used to restore the global interpreter variables and to restore
the previous symbol table. Execution is then continued with the
statement following the call-statement which caused the
subprogram to be invoked.

4.3. 4.4 Program Termination

A BASIC program may be terminated by any one of four
methods. First, and foremost, execution may be terminated by
BASIC having executed the last statement in the program. In
order to interrupt execution without running off the end of the
program the stop and end-statements are provided. Finally, as an
aid in debugging BASIC programs, breakpoints and the

PAGE '8 Revision 3.0

Product 359 BASIC Interpretef 30JUN 80O

break-statement may be use to halt execution with the option of
resuming execution at exact point where it left off

4.3. &6.4.1 Noermal

Normal completion of a BASIC pragram occurs when the last
statement in the program has been executed. This is detected by

the parser when the movable line number table pointer (EXTRAM)

reaches, and passes, the end of the line number table (STLN).
This condition is checked everytime a statement has completed
execution and the line table pointer (EXTRAM) is decremented by
four. When it is determined that EXTRAM has passed STLN (has a
lower address) the interpreter returns to top-level in the same
manner it does when an imperative statement has been completed
(see section 4.3.1).

4.3.6.4.2 GTOP and END

The stop and end—-statements are treated exactly the same in
this BASIC. Neither 1is required in a BASIC program however if
one is present it is executed in the following manner. The
address in the statement table causes control to flow into the
code which is used to return to the top-level in GPL. The code
loads wup the GPL address of the statement following the
XML EXECG statement which caused the program to be executed and
returns to the GPL interpreter with that as the GPL ‘program
counter’. In the GPL code, the statement +following the EXEC
instruction 1is a case statement which checks for what type of
statement ending is taking place. In this case it is a normal
end of execution and control flows into the top—-level routine of
the interpreter. “

4.3.4. 4.3 DBreakpoints

Breakpoints are provided in this BASIC to allow the user a
strong debugging facility. Breakpoints can occur in three
different ways. First, a breakpoint can be set by using the
break—-command of BASIC. Second, a breakpoint can be taken by the
execution of a break—command without a line number, and finally
a breakpoint can be taken by the user depressing the shift—-C key
on the keyboard. Section 5.1 describes how breakpoints are set
and what happens when a breakpoint is taken.

4.3.7 FEunctions and Operators

This section describes how all of the functions and
operators contained in the Product 359 BASIC are handled. This

PAGE 79 Revisian 3.0

Product 359 BASIC Interpreter 30JUN 80

includes all of the arithmetic functions and operators, string

functions and operators, relational operators and how
vuser—defined functions are executed.

4.3.7.1 Arithmetic Operators

The arithmetic operators can be divided into two
categories, the LEDs and the NUDs. The LEDs are all of the

binary operators (+,-,#,") and the nuds are the unary operators
(+ and -},

Execution of the unary (NUD) operators are very simple and
a small piece of common code used for the two. Each of the nud
handlers does a parse to pick up the operand. The minus operator
then does a negation of the value received and then the common
code is executed. The common code merely checks to be sure that
the wvalue parsed 1is a numeric value and if it is an B @CONT
instruction is executed, otherwise an error occurs.

Execution of all of the binary (LED) operators are very
similar and common c¢ode is wutilized to handle the common

portions of each operator. Each of the operators does a parse to
a particular level.

Each of the operators, plus, minus, multiply, .divide and
involution push . the first operand onto the stack and then do a
parse to pick up the second operand. Both plus and minus do a
parse to the level of the minus. This insures that both plus
and minus have the same precedence. Similarly,
both multiply and divide parse to the level of the divide. This
insures that both multiply and divide have the same precedence.
After the parse for esach operator has been done common code is
entered to <complete the operation. The common code checks to
make sure that each of the arguments are numeric and then «calls

the appropriate floating point routine to complete the
operation. After the floating point operation has been
completed, a check is made so that an warning condition can be

indicated in the case of an overflow, and then a branch to CONT
is made to return control to the parser.

4.3. 7.2 Arithmetic Functions

Included in the Product 359 BASIC interpreter are fifteen
arithmetic functions. These may be divided roughly into ¢ftwo
different types, trignometric and other functions. Included in
the trignometric functions are the arctangent (ATN), <cosine
(COS), sine (SIN) and tangent (TAN). The remaining functions
include the absolute value (ABS), end-of-file (EOF), exponential
(EXP), integer (INT), natural-logarithm (LOG), maximum (MAX),
minimum (MIN), pi (PI), natural-logarithm (LOG), random number

PAGE 80 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

(RND}, signum (SGN), and the square root (SQR) function. All of
the nud handlers for the arithmetic functions are written in
?9200 assembly language except for EOF, MAX, MIN, PI, and RND
functions which are written in GPL.

4,.3.7.2. 1 Trignometric Functions

All of +the ¢trigmonmeric functions are handled in exactly
the same way by the interpreter. Each of the NUD handlers stores
the address of the function evaluator (address in TRINSIC) into
R2 and then proceeds into a section of code entitled COMMON.
COMMON checks to make sure that there is enough room on both the
subroutine and value stacks for the floating point operations to
take place. I+ there is not enough Toom an error occurs. COMMON
then places the address of the correct routine (R2) onto the top
of the subroutine stack, so that it can do a parse to pick up
the argument. It then restores the routine address to R2,
verifies that the argument parsed is a numeric and then does a

BL #R2 to evaluate the #function. When the +function returns,
COMMON then checks for any errors or warnings, handles them
appropriately and, it it is able to continue, executes a

B @CONT instruction to return to the parser.

The algorithms used to evaluate the trignometric functions
evaluate a set of polynomials ¢to approximate the correct
answers. The algorithms will not be described in detail here, as
they are common. algorithms. Information on the algorithms and
their origins may be found in the TRINSIC listing of BASIC.

4.3.7.2.2 0ther Arithmetic Functions

Of the remaining arithmetic functions included in the
Product 359 BASIC, the exponential (EXP), natural logarithmic
(LOG), and the square root (SQR) +functions are handled in
exactly the same manner as the trignometric functions described
in the previcus section. As with the trignometric functions., the

algorithms wused to evaluate these functions will not be
described here.

The greatest integer (INT) function is evaluated by the
GRINT function but is called directly from the BASIC integer
code and does not go through COMMON, as the other functions
which are evaluated by routines in the intrinsic package.

The maximum (MAX) and minimum (MIN) functions are esvaluated
in exactly the same manner, except that each has 1its beginning
which determines which way to interpret the comparison and then
common code is executed which does the comparison and puts the

correct wvalue into the FAC. In executing each of the functions,
common code is used which checks for the correct syntax, parses

PAGE 81 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

the two arguments, compares them and returns the condition of
the comparison to the two front-end pieces of code. The
front-end code then interprets the comparison and either leaves

the second argument in the FAC or moves the first argument from
ARG to the FAC.

Execution of the pi (PI) function involves simply placing

the constant value of pi into the FAC and executing an XML CONT
instruction.

The random number function (RND) generates the next number
in a pseudo-random number sequence.

The signum (SGN} function is a very simple to execute. It
first parses its argument and verifies that the result that it
gets is a numeric. It then checks to see if a value of zero has
been returned and i+ it has, then 8GN returns that to the
parser. If a non-zero value has been generated, SGN uses a GPL
TBR instruction to see if the number is positive or negative. It
then does a MOVE instruction to place a floating point one into
the FAC and if the argument was negative, the floating point one
is negated to indicate that the argument was less than zero.
When all this is completed, an XML CONT instruction is executed
to return control to the parser. ,

The end—of-file (EOF) function nud handler is contained in
the FLMGR assembly. The function is executed by first parsing
the argument (which is the logical unit number) and finding the
corresponding PAB in the I/0 chain (see Home Computer File
Management Specification). It then loads the I/0 oap code for
status (0%9) into the PAB and calls the DSR to determine the
status of the file or device. After the DSR returns, a floating
point one is loaded into +the FAC. A check is made of the

returned status and if the file/device is a a physical
end—-of~-file, the floating one in the FAC is negated. If the
file/device is not at an end-of-file, the FAC is cleared. After

the correct number is in the FAC, an XML CONT instruction is
executed to return control to the parser.

4 .3.7.3 Gtring Operators

The only string operator supported by the Product 359 BASIC
is that of concatenation (%). The concatenation operator is used
to concatenate two strings together into one string.

4.3.7.3.1 Concatenation

The LED handler for concatenation, as are all of the string
- functions, is written in GPL and is contained in the EXEC
assembly of BASIC.

PAGE 82 . Revision 3.0

Product 359 BASIC Interpreter 30JUN 80O

Getting to the LED handler for concatenation is handled
directly by accessing the tables of the parser.

To execute the concatenation operation, the left~hand
operand is pushed on the stack and the right-hand argument is
parsed. The lengths of the two strings are then added together.
If the length of ¢the result string would be greater than the
implementation capacity of 255, then 255 is set as the length
for the result string and a truncation warning occurs. The
system get-string routine, GETSTR, is called to allocate a
sftring for the result. The left-hand argument is then copied
into the result string. As much of the right-hand string as is
possible, depending upon fruncation, is the copied into the
result string, completing the concatenation operation. Control
then returns to the parser via the XML CONT instruction.

4.3.7.4 String Functions

This section will deal with the string functions ASCII
(ASC), character (CHRS$), length (LEN), position (POS), repeat
(RPT%), segment (SEG$), string (STR$) and value (VAL). Although
the functions ASC, LEN, POS and VAL all return numeric wvalues,
they are being discussed in this section because they take
string arguments and are four of the primary means of aperating
on strings. All of the NUD handlers for the string operations

are written in GPL and are contained in the EXEC assembly of
BASIC.

The ASCII function (ASC) returns the ASCII value, in
decimal, of the first character of the string argument supplied
to the function. After parsing the argument, ASC takes the first
character of the string (null strings cause an error), puts it
into ARG and then Jumps into the LEN code to take advantage of
common code to convert the character to its ASCII number.

The character (CHR$) function takes, as its argument, an
integer value, which is converted into the one-character string
containing the character specified by the ordinal position
within the ASCII collating sequence. Execution of the CHR$
function is done by parsing the argument and converting it into
an integer. A one-character string is the created, the integer
value, which is the ASCII value, is copied into the string and a
XML CONT instruction is executed to complete the function,.

The string length (LEN) function is used to find the number
of characters contained in the string specified by the argument.
LEN parses the argument and takes the length of the string,
returned in the FAC entry, from FAC+&6/7, and then converts it
into a floating point point number and executes an XML CONT
instruction to complete execution of the function.

PAGE 83 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

The position (POS) function is used to find the character
position of the first character of the first occurrence of one
string within another beginning at a particular character
position within the source string. Execution of the POS function
involves parsing the three arguments, pushing the first two on
the stack, as soon as they are parsed. When the third argument
is parsed, it is converted to an integer to be used internally
to use as the starting character position for the comparison.
The +two string arguments are popped off the stack, moving the
second argument (first popped off) into ARG from FAC. I# the
source string 1is found to be null, then the value zero is
returned as no match can be made. The character position which
has been specified is then compared to the length of the source
string and if it is greater, then a zero is returned by the
function, since no string match can be found. If the match
string is null, then the value of 1 is returned, indicating that
‘a match occured in the first column, as the null string matches
rany string. The strings are then compared, character by
character, in an intricate loop in an attempt to find a match
for the second string within the source string. If a match is
found, then the <characer position of the first character
matching 1is returned in the FAC. If no match is ever found then
a value of zero is returned in the FAC. Note that the code in

LEN is used to convert the integer position of the match into a
floating point value.

The repeat (RPT%$) function is used to create a string with
n copies of first character of the source string. Execution of
the RPT$ function involves the parsing of the arguments and then
creating a string with the required number of characters. If the
number of characters specified is negative or non-numeric, an
BTTOr OCCUTS. If the number of characters exceeds 255 it is
truncated. After the result string has been created, the source
string is then replicated the required number of times to
produce the desired result

The string segment (SEG%$) function is used to extract one
string from another. The arguments specify the source string,
the character position within the source string from which +the
new string 1is to begin and the length of the new string.
Execution of the SEG$ function involves the parsing of the first
two arguments, pushing them on the stack and then parsing the
third argument. After <the third argument has been parsed,
converted to an integer and saved, the first two arguments are
popped off the stack, saving the second argument (the first
pooped off the stack) before popping the first argument. A
comparison is made to see if the character position specified is
greater than the length of the string, and if so, the null
.~ string is returned. If the character position specified plus the
number of characters asked for is greater than the length of the
source string then the entire source string beginning with the
specified position is taken otherwise the specified portion of
~the source string is taken. When the exact length of the string

to be taken has been determined, a string of that length is

PAGE 84 Revision 3.0

Product 359 BASIC Interpreter 30JUN B8O

created by using GETSTR and the correct string is copied into
the result string and a string FAC entry is built. When this has
been completed, an XML CONT instruction is executed to return
control to the parser.

The string function (STR$) is used to convert a number into
its string equivalent. It does this by first parsing the
argument and converting it into a string by using the Convert
Number to String (CNS}) routine. STR$ then gets rid of any
leading spaces and then <calls the string literal routine
(LITSTR) to create a string, copy the converted number into the
string and to build <the FAC entry. After completion of this
an XML CONT instruction is executed to return control to the
parser.

The numeric wvalue function (VAL) is used to convert the
string representation of a numeric value into a number. It does
this by first parsing the argument and then converting it. STR$
converts the argument by removing any leading or trailing blanks
from the source string and then allocating a new string with the
exact number of characters contained in the number portion of
the source string plus one. The numeric portion of the source
string is copied into the new string and a blank—-space character
is appended to the end of ¢the string to indicate to the

conversion routine where the string ends. The conversion
routine, CSN, is then <called to <convert the string into a
number. When CSN returns a check is made to verify that the

string was converted and that an illegal argument was not passed
and if there where no errors an XML CONT instruction is executed
to return control to the parser.

4.3.7.5 User-Defined Functions

Execution of user~defined functions is one of the more
complicated parts of the Product 359 BASIC interpreter. Note
that this implementation supports only one—-parameter,
single-line user—-defined functions.

When a reference to a user—defined function is encountered
control flows to the UDF code contained in the EXEC assembly of
BASIC. The UDF code is entered with FAC containing the pointer
to the symbol table entry for the function definition and CHAT
containing the <character +following the referenced name. The

first +thing that is done is +that a parameter count is
initialized to zero (FAC+7), assuming that no arguments are
provided.

I+ CHAT contains a left parenthesis then it is assumed that
an argument is being supplied and it must be parsed. The pointer
to the symbol table entry in FAC is pushed on the value stack to
save it while the argument is being parsed. After the argument
has been parsed it 1is moved from the FAC to ARG so that the

PAGE 85 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

symbol table pointer can be popped off of the wvalue stack and

the argument count is incremented to indicate that a parameter
has been encountered.

The symbol table pointer and number of arguments are now
saved in temporary variables so that they can be used later.
VPUSH is called to reserve an entry on the stack for the UDF
entry that is to be constructed. The parse result (or a dummy
entry if no arguments are supplied) 1is then pushed onto the
stack for safe keeping. The first byte of the function’s symbol
table is fetched to see if the number of arguments supplied-

matches the number of parameters needed by the function. If it
does not match, an error occurs.

The UDF stack entry is now constructed by copying PGMPTR,
the string flag bit of the symbol table entry, the symbol table
pointer and the free-space pointer into FAC through FAC+7,
respectively. Until the parameter entry has been made on the
symbol table, the stack ID for a user—defined function is 270 so
that if an error occurs in the ENTER routine, the first entry on
the symbol table will not be deleted when the stack is cleaned

up by the error handler. The entry is then pushed onto the stack
below the parse result.

Now a symbol table entry must be constructed for either the
parameter or a dummy entry to keep the global variable scoping
correct. This second case prevents one user—defined function
having a parameter which has the same name as a global variable
from invoking another wuser—defined function which wuses that
global variable from getting the value of the parameter.

After the parameter entry has been made into the symbol
table, the real UDF stack ID, 6B, is put into the UDF stack
entry so that if an error occurs during the execution of the
function, the parameter entry will be removed #from the stack.
The symbol table link in the parameter‘s symbol table entry is
changed so that global scoping is used for variables appearing
in the UDF definition. Now the argument value is popped off of
the stack and the value is assigned to the parameter. Note that
i¥ no parameter was provided, garbage is assigned to the dummy
symbol table entry which does not affect anything since the
entry has a zero-length name and cannot ever be used for
anything, except to give global values.

After the parameter wvalue has heen assigned ¢to the
parameter, the function definition is actually parsed to get the
value for the function. When the parser returns to the UDF code,
a check is made to be sure that the value returned has the same
type as the function, i.e. a string function produces a string
result and a numeric function returns a numeric result. If the
type matches correctly then the parameter entry is delinked from
the symbol table, the stack entry is retrieved to restore the
old symbol table, free-space and program pointers are restored
to resume execution at the point where the function was

PAGE 86 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

referenced and then an XML CONT instruction is executed to
return control to the parser.

4.3.7.6 Relational Operators

The relational operators, equal, not-equal, less—than,
less—than-or-equal, greater—than, and greater—than-or-equal are
handled by a common piece of code in the PARSE assembly of
BASIC.

When one of the relational operators is encountered a value
is assigned to the operation, O through 5 (assigned in the list
above, with O being equal and 5 being greater—than-or—equal).
This wvalue is then used after a comparison of the two operands

has been made to determine how the comparison is to be
interpreted.

The comparison of the two operands is done by using the
floating point routine SCOMP for numeric comparisons or by using
special code for comparing two strings which is contained in the
relational code. When comparing strings, the strings are
compared character—-by-character wuntil all of the characters
match, a character does not match, or all of the characters have
matched but one string still has more characters. The three
cases gJust described result in the strings being considered
equal, not-equal or one string being considered greater—than the
other one, respectively. In the third case, that all of the
characters have been compared and are equal, and one string is

longer, the longer string is considered to be greater than the
shorter one.

After the comparison, either string or numeric, has been
completed, then the number assigned to the comparison type (O
through 35, above) is used as an index into a small branch table
to cause control to branch into a series of conditional
Jump—instructions which cause a O (false comparison’ or a minus
one (true comparison) to be loaded into the FAC. After this has

been completed, a B @CONT is executed to return control to the
parser.

4.3.7.7 Boolean Operators

The boolean operators, AND, OR and XOR, are all handled
similarly as they are all LEDs. The operator, NOT, is handled a
little differently as it is a NUD. All four of the operators are
handled in the NUD assembly of BASIC.

In evaluating the three LEDs, AND, OR and XOR, the two

arguments involved are converted into integers and the
appropriate 9900 Assembly Language instruction is wused to

PAGE 87 Revision 3.0

Product 359 BASIC Interpreter 30JUN B8O

perform the operation on the two integer operands. A SZC (Set
Zeros Corresponding) instruction is used to evaluate the AND
operation. A SOC (Set Ones Corresponding} instruction is used to
evaluate the OR operation. An XOR (eXclusive OR) instruction is
used to evaluate the XOR operation. Each of the operations is
completed by converting the integer result to a floating-point
value and returning to the parser.

The NOT operation is evaluated by parsing the argument,
converting it into an integer, inverting it, and converting it
back into a floating-point wvalue. The 9900 INV (INVert)
instruction is used to do the evaluation.

4.3.8 Error Handling

A significant portion of the Product 359 BASIC interpreter
is devoted to the detection, reporting and handling of errors.
The interpreter has many checks for syntax, illegal statements,
memory overflow and semantic errors. Errors are detected as soon
as possible once a program is entered into memory. Any errors
which can be detected when a statement is entered are reported
immediately. A number of errors which really would not occur
until a program is executed are detected during the static scan
of the program to report them as soon as possible. The following
three sections describe what actions are taken by the
interpreter when an error is detected and how the special ON
ERROR and ON WARNING features of the interpreter are
implemented.

4.3.8.1 Detection

Errors may be detected in any number of ways but once an
error is detected the interpreter handles it in a specific
manner. The error handling routine of the interpreter is
entitled ERR$% and is located in the PSCAN assembly of BASIC.

When an error is detected ERR$% is called by wusing a
CALL ERR%% statement followed by one data byte which contains
an error number which is actually an index into a table which is
maintained in the error routine. A sample calling sequence is:

MSGSNM EQU 15

CALL ERR$% Issue the error message
DATA MSGSNM #S5TRING~NUMBER MISMATCH

The error message, STRING-NUMBER MISMATCH is contained in

~the EDIT assembly of BASIC and its address is contained in the
error table of the error routine. MSGSNM is an equate for the

PAGE 88 > Revigion 3.0

Product 359 BASIC Interpreter 30JUN BO

15th entry in the error table (15 is used purely for example
here} which contains the error code and error severity reported
by the CALL ERR subprogram and the address of the message text

which can be displayed on the screen. Note that the internal
number (index into the error table) does not necessarily match
the error number which is reported to the wuser. When control

reaches the error routine, it does a GPL FETCH instruction to
get the index into the ervor table.

The preceeding discussion assumed that the error was
detected by a Graphics Language portion of the interpreter. When
an error is detected within the assembly language portions of
the interpreter, a value is placed in the variable, ERRCOD, and
control returns to GPL at the CASE statement following the
XML EXEC instruction which started the statement or program
executing. The case statement sends control to a small error
routine in the EXEC assembly which then does another CASE
statement to send control to a statement which calls the error

routine with the appropriate error index following the
call-statement.

4.3.8.2 Reporting

All error reporting is handled by the error routine, ERRS,
which 1is contained in the PSCAN assembly of BASIC. The error
routine first fetches the one byte of the error table index so
it can pick up the error number, severity and message address
from the error table. It then checks to see if the symbol table
pointer is pointing into the c¢runch buffer (UDFs can cause this)

and i+ it is, it is restored to the correct place. It then
fetches the information, described previously, from the error
table. ‘

I+ the severity of the error is zero, which has been
defined to be only a system message is being displayed and not
an error, the error-print routine, ERPRNT, is called to get the
message from the GROM and display it on the screen. When control
returns from the error-print routine, a check is made to see 1if
the message which has just been displayed indicated that BASIC
is going through an intialization procedure (displaying the
opening message}). I+ so, CLSALL 1is called to close any open
files. The stack is then cleaned up and control returns to
top—level.

If the severity of the error was not zero, which indicates
that an actual error has occurred, a check is made to see if the
ON ERROR condition has been set. If it has not, the ¢trace-back
routine, TRACBK, is called to provide trace-back of errors which
have occurred in executing a user~defined function or an error
which has occurred in execution of a BASIC subprogram. I+ the
error has occurred in either one of these structures, the stack
and symbol table is used to display the original error message

PAGE 89 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

and then trace back through the levels of function and / or
subprogram invocation to the main program to indicate exactly
when and how the error occurred. If the error did not occur
within the execution of one of these structures, TRACBK returns
with the condition reset to indicate that the normal error-print
routine needs to be called. If this is the case the procedure
used is identical to when a message—-only call to the error
routine is made, as described above; the error—print routine is

called, the stack is cleaned up and control is returned to
top—~level.

In the <case that ON ERROR has been armed (by execution of
an on-error-statement), the routine, CLEAN, is called to clean
up the stack and the error stack entry is built using the
information obtained from the error table. If there is room on
the stack, the entry is pushed on it. If not, the original error
message is displayed and another error message is displayed to
indicate that the error recovery rvoutine could not function. I¢
this is the case:, control returns to top-level. If there is room
on the stack, the error entry is pushed, the saved line number
table pointer is placed in EXTRAM (moved from VDP where it was
saved by the execution of the on-error—-statement). the VDP
location is cleared to indicate that the ON ERROR has been taken
and can’t be taken again, and control is returned to the parser
via the execution of an XML CONTIN which will cause execution of

the program to resume with the line specified by the on—-error
line number.

4,.3.8.3 Warnings

Warnings issued by the interpreter are handled in much the
same way as errors, except that execution normally continues
after the message has been displayed. The only warnings which
€an occur when a program is executing are: a NUMERIC OVERFLOW
when a floating point operation has taken place and the
machine’s capacity has been exceeded; an INPUT ERROR when the
wraong number of input items has been entered or the type of the
items entered does not match the type of the variables into
which the value is to go; and, a string truncation warning
whenever 3 string has to be truncated because it exceeds the 255
allowable characters.

The warning routine, WARN$$, is called in the same manner
as the error routine, ERR$%, with the index into the error table
following the call statement, as in the following example:

MEGNO EQU 14

CALL WARNS$$ Issue a warning message
DATA MSGNO # WARNING: NUMERIC OVERFLOW

PAGE 90 Revisgion 3.0

Product 359 BASIC Interpreter 30JUN B0

The warning routine first fetches the index into the error
table and then fetches the information contained there. It then
checks the warning print-bit to see if the on—warning condition
indicates that the message should be displayed. If it should,
the screen is scrolled, the message, * WARNING, is displayed and
the trace-back routine is called to possibly ¢trace back the
error if it occurred in the execution of a user—defined function
or a BASIC subprogram. If so, TRACBK issues the messages and
returns. If the error did not occur in one of the two cases, the
error—print routine is called to display the message. The
warning-stop-bit is then checked to see if execution is to
continue. If execution should continue, an RTN instruction is

executed to return to the caller. If the warning condition
indicates that the program is to stop execution wupon the
detection of a warning, the stack is cleaned up and control

returns to top-level.

4.3.8.4 0On Error Statement

The on—error-statement 1is wused to <change the on-error
condition from +the default case to the special <case and
vice-versa. When an on-error—-statement has been encountered by
the ON statement code of the parser control flows to the ONERR
routine contained in the EXEC assembly of BASIC. ONERR checks to
see if a line number is present. If it is, the line-number table
is searched to find the line and if it exists, the pointer
within the table to the line specified is stored in the VDP RAM
location which has been reserved for it. I+ ¢the on-error
condition being specified is to stop when an error has been
detected, the special location in VDP RAM is cleared to indicate
that the default error handling conditions exist(displaying the
message and aborting). A check is then made to be sure that the
statement ended <correctly and control then returns to the
parser.

4.3.8.5 0On Warning Statement

The on-warning statement is handled in much the same way as
the on-error statement except that the keywords, PRINT, STOP and
NEXT are expected. If the keyword, STOP, is encountered, the
print-bit is cleared to indicate that any messages are to be
displayed, and the stop-bit is set to indicate that execution is
to stop if a warning occurs. If the keyword, PRINT, is
encountered, both the print-bit and stop-bit are cleared to
indicate that any warning messages are ¢to be displayed an
execution is to resume after doing such. This 1is the default
condition. I+ the keyword, NEXT, is encountered, the print-bit
is set to indicate that warnings are not to be displayed, and
the stop-bit 1is cleared to indicate that execution is to

PAGE @1 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

continue, without displaying any message and without
interrupting the flow of the program. :

PAGE 92 Revisiaon 3.0

Product 359 BASIC Interpretef 30JUN 80

5.0 Debugging Aids

The Product 359 BASIC includes two aides for wuse in
debugging BASIC programs, breakpoints and ¢tracing. Breakpoints
allow the wuser to cause execution to proceed as normal until a
certain statement is about to be executed and execution is
interrupted to allow the user to look at and assign values to
variables and then resume execution. Tracing a program causes.
the line numbers of each 1line to be displayed on the screen
before each statement is executed, allowing the wuser to see
exactly how control is flowing through the program.

5.1 Breakpoints

Breakpoints in the Product 359 BASIC may be caused in one
of three ways. First, the shift-C key on the keyboard may be
pressed, halting execution. Second, a break-statement with no
arguments may be executed. Third, a breakpoint may have been set
by a break—statement and have been encountered. Each of <these
types is discussed here or in the following section.

Whenever the parser 1is about to begin execution of a new
statement, it checks to see if the shift-C key is depressed on
the keyboard. If it has been depressed, a break is taken by
loading the break-flag code into ERRCOD and returning to GPL.
The GPL code causes the screen to be scrolled and the breakpoint
message is displayed on the screen, as well as the current line
number. The current line number table pointer (EXTRAM) and 1line
pointer (PGMPTR) are saved in the VDP RAM in special locations
to indicate that a continue statement can be executed if it 1is
entered by the user. The default character set is then restored
and control returns to top—level to await a command.

The other two types of breakpoints are intimately tied wup
with the execution of the break—-statement and are described in
the following section.

S.1.1 BREAK

The break—-statement serves two functions in the Product 359
BASIC. First, it can be used to set breakpoints at particular
lines in a program and, second, it can be used in a program %o
cause a breakpoint to occur when it is executed (break—statement
without any line numbers specified)

In order to set a breakpoint at & particular line in a

-BASIC program, the most—significant bit of the most-significant
byte of the line number in the line number table is set to a

PAGE 93 . Revision 3.0

Product 359 BASIC Interpreter : 30JUN B8O

one. When the break-statement picks up a line number from the
line-list, the line number table is searched to locate the line
specified. I# the line is not contained in the program then a

‘warning message is issued, but, the rest of the line-list is
searched, setting any other legal breakpoints. Once the line has
been found the most-significant bit of the line number is set to
a one to set the breakpoint. ‘

This method is used because the line numbers are restricted
to a maximum value of 32747 and so the most—significant bit can
never be set to a one. It would be more efficient to set the
most-significant bit of the line pointer to a one but with the
addition of support for the expansion RAM peripheral and its &4K
address space this method will not work. Thus, when the parser
is ready to execute a new line it must first pick up the line
number to check for a breakpoint. If the line number has the
most-significant bit set to a one, the parser determines that a
breakpoint has been set on that line and control flows to the
breakpoint handler in exactly the same manner as when the

shift-C key is depressed on the keyboard (described in the
previous section}.

When a break-statement without a line number 1list is
encountered, it is interpreted as being an immediate breakpoint
and control flows from the break-statement handler +to the
breakpoint code to indicate that a breakpoint has been taken.
Before control reaches the breakpoint handler, the current line
number table pointer and text pointer are saved so that if a
continue—-command is entered, the statement following the
break-statement is where execution will resume,

S5.1.2 UNBREAK

The unbreak—statement can be used to selectively Tremove or
totally remove all breakpoints. When the unbreak—-statement is
executed without any line number specified, it goes through the
entire program in memory and resets the top bit of all of the
line numbers in the line-number table. This clears any and all
breakpoints that might have been set. It makes no difference
that a breakpoint is not set at a particular line since
resetting the top bit of the number will make no changes to it
if the bit is already reset.

V If a line~list is specified, then the program is searched
for each line, and the top bit of each line number is reset for
each line listed. If a line is listed which does not exist, a

warning condition occurs, but the remainder of the line list is
processed.

PAGE <94 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80O

3.1.2 0On_Break Statement

When an on-break-statement has been encountered by the ON
statement code, control flows to the ONBRK code contained in the
EXEC assembly of BASIC. One of the keywords, NEXT or STOP, is
then expected. If the keyword, STOP, is encountered, the
on-break bit is reset to indicate that, if a break—-key or
breakpoint is encountered, it is to be abided by and the
breakpoint is to be taken. If the keyword, NEXT, is encountered,
the on-break bit 1is set to indicate that, if a break—key or
breakpoint is encountered, it is to be ignored and execution is

to continue as if the break-key or breakpoint was never
encountered.

5.2 CONTINUE

The code to execute the continue-command is contained in
the EDIT assembly of BASIC, as it is a command and not an
axecutable statement. When the continue command is executed, a
check is made to see if a breakpoint has been taken. If one has
(EXTRAM and PGMPTR were saved in the VDP by the breakpoint
handler) been taken, the program flag is swithched back to
program mode, continue is disabled (the special VDP RAM continue
words are cleared), and an XML CONTIN instruction is executed to

return control to the parser. If a breakpoint has not been
taken, an error message 1is issued to state that BASIC can‘t
continue executing a program if it has not executed a

breakpoint.

5.3 Tracing

The trace feature of the Product 359 BASIC is a very simple
one to execute. The trace and untrace—-commands to turn on and
off, rvespectively, the ¢trace feature are described in the
following sections.

When a statement is about to be executed., the parser checks
to see if trace-mode is turned on and, if it is, the trace
routine is called to put the line number on the screen. When
control reaches the trace handler, it calculates the current
screen address to see if the trace information can be put on the
current line or if the screen must be scrolled fist. If there is
not enough space on the screen, it is scrolled and the screen
address is initialized to the beginning of the bottom line of
the screen. The less—than character is then displayed, followed
by the line number which has been calculated, and finally
followed by a greater—than sign to close out the displayed
information. The screen address is wupdated to be after the
displayed line number and an XML RTNB instruction is executed to
return to the parser to execute the statement for which the line

PAGE 95 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

number has Jjust been displayed.

5.3.1 TRACE

Execution of the trace—-statement involves simply setting
the +trace flag bit (bit 4) of the interpreter variable, FLAG,

and executing an XML CONT instruction to return control to the
parser.

5.3.2 UNTRACE

Execution of the untrace—-statement involwves simply clearing
the trace flag bit (bit 4) of the interpreter variable, FLAG,

and executing an XML CONT instruction to return control to the
parser. '

PAGE 96 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

6.0 Expansion—RAM BASIC Program Support

A complete description of the support for the expansion RAM
peripheral 1is contained in the Product 359 BASIC Interpreter
Expansion RAM Peripheral Support Software Specification and will
not be duplicated here. That document is considered to be part
of this specification and read as such.

PAGE <97 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

7.0 GPL Subprograms

This section describes the GPL subprograms contained in the
Product 359 BASIC interpreter. The subprograms supported
include: CLEAR, HCHAR, VCHAR, GCHAR, CHAR., KEY, SOUND, COLOR,
SCREEN, VERSION, SPRITE, DELSPRITE, DISTANCE, COINC, POSITION,
MAGNIFY, MOTION, LOCATE: PATTERN, SAY, and SPGET. The
subprograms which have the same names as those in the 99/4 BASIC
have been rewritten and included in the Product 359 package
because of necessary changes to support multi-statement lines
and changes to allow them to be invoked by the call-statement,
as it has been rewritten to support BASIC subprograms. The
subprograms contained in the 99/4 BASIC are not accessible from

this BASIC and those in this BASIC are accessible from the 99/4
BASIC.

7.1 CLEAR

The clear—-subprogram is wused to clear the entire screen.
.Execution of the subprogram involves execution of a GPL “ALL"
instruction to set all of the characters on the screen to
spaces, initializing the screen column pointer to the third
column and returning to the caller.

7.2 GOUND

Execution of the sound-subprogram involves parsing the
arguments, building 2 sound list in the CPU RAM and then moving
it into the VDP RAM and issuing an I/0 call to the sound
generators. The sound—-subprogram begin by parsing the duration
of the sound which is to be generated by this invocation of the
subprogram. I+ the duration is negative, the current sound, if
any, is terminated and the duration is made positive. It is then
converted into 1/60‘'s of a second and saved in a temporary
location in the CPU RAM. Next, the frequency/attenuation pairs
for the +thrve sound generators (or for one or two sound
gererators if that is all that is supplied) are parsed and
placed in the table being built in the CPU RAM. If a negative
frequency is encountered, the noise control byte in the table is
loaded with the correct value. If a fourth frequency/attenuation
pair is provided, it is treated as noise control and is loaded
into the table at the appropriate location. After all of the
arguments to the sound-subprogram have been parsed and the table
for the sound generators has been built, the subprogram then
waits wuntil any previous sound is completed and then loads the
new sound table out to the sound generators and issues an I/0
call to start the sound generators producing the desired sound.

PAGE 98 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

7.3 COLOR

The color—-subprogram is used to change the foreground and
background colors of particular character sets (portions of the
entire character set}) or +to change the color of a particular
sprife. The usage of the color—-subprogram to change the color of
a sprite is described in the Product 359 GSprite Specification
and will not be described here.

Execution of the color-subprogram when changing the colors
of a character set begins by parsing the character set number
and converting it into an address into the character color
table. The foreground and background colors are then parsed,
verified +to be in the correct range (i1-146) and then are loaded

inte the «color table at the address calculated from the
character set specified.

7.4 SCREEN

The screen subprogram is wused to change the background

color of the screen. Execution of <the subprogram involves
insuring that the left parenthesis is present, parsing the color
specification, converting it into an integer and loading VDP

register 7 with the color specification and returning to the
calling program.

7.5 CHAR

The char-subprogram is used to define special characters
This includes defining both new characters and rtedefining the
standard character set which is contained in the interpreter.
The characters in the character set are wused for both the
standard pattern generation and for the sprite definitions. A
complete description of the char-subprogram appears in the
Product 359 Sprite Specification.

7.6 KEY

The key—-subprogram is used to determine if a key is being
depressed on a keyboard (either the console keyboard or a remote
keyboard). The subprogram returns the keyboard status and the
key code if a key is being depressed. Execution of the
subprogram begins by parsing the keyboard unit which 1is to be
scanned and then scanning the appropriate keyboard unit. The
‘key-code assigned to the veturn wvariable will be either the
ASCII representation of the key or zero if no key is depressed.

PAGE 99 . Revigion 3.0

Product 359 BASIC Interpreter 30JUN 80

The value assigned to the status variable will be zero if no key
is depressed, minus-one if the same key is depressed as when the
last call to the key-subprogram was made, and one if a neuw key

has been depressed since the last call to the key—subprogram was
made.

7.7 VCHAR

THE vchar-subprogram is wused ¢to vertically repeat a
character on the screen. The +two arguments supplied to the
subprogram indicate the position on the screen where the first
character is to be displayed. The third argument specifies the
ASCII character number of the character to be displayed on the
screen. The fourth argument is optional and if it is present
specifies the number of times the character is to be repeated
vertically on the screen. The characters are displayed from the
starting position, down the screen, wrapping around to the top
of the screen when at the bottom of the screen and wrapping

around to the upper left—hand corner when the lower right-hand
corner is reached.

Execution of the subprogram begins by parsing the screen
position arguments and initializing the screen postion to the
correct position. It then parses the character number and saves
it in a temporary. If the optional repeat count is present it is
parsed, otherwise a default of one is used. Finally, a loop is
entered which displays the character on the screen as many times
as nacessary. When the character has been displayed the required
number of times, control returns to the calling program.

7.8 HCHAR
The hchar-subprogram is exactly the same as the
vchar—-subprogram except that the character 1is repeated

horizontally on the screen, wrapping around to +the following
line when the end of one line is reached and wrapping around to
the wupper left-hand corner of the screen when the lower
right-hand corner is reached. Execution of the subprogram is
essentially the same as the execution of the vchar—-subprogram
and the reader is referred to the previous section.

7.9 GCHAR

The gchar—-subprogram is used to read a character off of the
screen at a specified location. Three arguments are necessary
for ¢the wexecution of the subprogram. the row and column
positions to read and a return—variable to which the character
number of the character occupying the position on the screen can

PAGE 100 Revision 3.0

Product 359 BASIC Interpreter 30JUN BO

be assigned. Execution of subprogram involves parsing the screen
posiftion arguments and setting up the screen address accordingly
and then reading the character off of the screen at that
position. The character wvalue is then converted into its
floating point representation and is assigned to the
return-variable, completing execution of the subprogram.

7.10 VERSION

Execution of the version—-subprogram involves first insuring
that ¢the character following the name is a left parenthesis. If
so, SYM and SMB are called to get the necessary information
about the return variable and the FAC entry resulting from these
two «calls is pushed on the stack. Next, a check is made to be
sure that a right parenthesis follows the variable name and if
it is present, a floating point 100 is placed in the FAC and the
ASSGNY routine is called ¢to assign the value to the return
variable, completing the execution of the subprogram. Caoantrol
then returns to the calling program.

7.11 GSprite—-access Subprograms

The sprite-access subprograms are described in the Product
359 Sprite Specification and will not be described " here. The
reader 1is rveferred to that specification, with the knowledge
that it is considered to be a part of this specification.

7.12 Gpeech—access Subprograms

There are two speech—access subprograms provided in the
Product 359 BASIC interpreter, SAY and SPGET. The say—subprogram
is used to actually speak a word or string and the
spget—subprogram is used to look up words in the speech library
and return the actual speech data to the BASIC subprogram
without actually speaking the word(s).

Execution of the say—subprogram involves first checking to
see if the speech peripheral is present and if so making sure

that a left parenthesis follows the subprogram name. The first
argument is then parsed. I+ it is not a string argument, an
error occurs. If the length of the string 1s non-zero, the

speech DSR is <called ¢to look wup the word in the speech
dictionary and then actually speak it. Next, a comma is checked
for and if it is present, the next argument is parsed, insured
to be a string and not too long and the string 1is fed to the
speech DBER for direct speaking of the string. If a comma is
present after the second argument has been parsed, the
subprogram loops back to the top and 1looks +for another

PAGE 101 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

word-string to look up and speak. If a comma is not present, a
right parenthesis must be present and if it is the subprogram
returns to the caller. Briefly, in pseudo-code, the

say—-subprogram looks like:

SAY IF NOT LEFT-PARENTHESIS THEN ISSUE_ERROR
REPEAT
PARSE WORD_STRING
IF NOT STRING_ARGUMENT THEN ISSUE_ERROR
IF STRING_LENGTH NOT EQUAL ZERO THEN
SPEAK_WORD
IF COMMA THEN
PARSE DIRECT_STRING
IF NOT STRING_ARGUMENT THEN ISSUE_ERROR
IF STRING TOO LONG THEN ISSUE_ERROR
SPEAK_DIRECT_STRING
IF RIGHT PARENTHESIS THEN RETURN
UNTIL NOT COMMA
ISSUE_ERROR

Execution of the spget—-subprogram involves first insuring
that a speech library is present. If one is not present, an
aTToT 0CCUTS, I+ one is present, the word or phrase for which
the speech data is to be fetched is parsed. If the length of the
sftring is non-zero, any timing characters which may appear at
the beginning of the string are skipped over and if the string
length is still non-zero the phrase or word is searched for in
the speech library. If the data string for the speech data is
too long an error occurs. Otherwise, a temporary string is
created in the string space and the speech data is "copied" (naot
simple copy) into the temporary string. Finally, the speech data
string (could be the null string because of checks made above)
is assigned to the return variable for use by the BASIC program.

PAGE 102 . Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

Appendix A - BASIC Keyword Table

Keyword Internal Value Keyword Internal Value
ELSE 81 T 82
' 83 IF 84
GO 85 GOTO 86
GOsUB 87 RETURN 88
DEF 8% DIM 8A
END 8B FOR 8C
LET 8D BREAK 8E
UNBREAK 8F TRACE 20
UNTRACE 71 INPUT 72
DATA ?3 RESTORE 24
RANDOMIZE ?5 NEXT : 96
READ 37 ' STOP 78
DELETE 99 REM FA
ON B PRINT 9C
caLL ?D OPTION FE
OPEN SF CLOSE AQ
SUB Al DISPLAY A2
IMAGE A3 ACCEPT A4
ERROR AS WARNING AL
SUBEXIT A7 SUBEND AB
RUN AQ LINPUT AA
(LIBRARY) AB (REAL) AC
(INTEGER) _ AD (SCRATCH) AE
undefined AF THEN BO
TO B1 STEP B2
' B3 i B4
B BS) Bé
(B7 % B8
undefined B9 OR BA
AND BB XOR BC
NOT BD = BE
< BF > co
+ ci - Cca
#* C3 / c4
CS undefined Cé
Quoted string c7 Unquoted string C8
Line number ce EOF CA
ABS CB ATN ccC
cos CcD EXP CE
INT CF LaG DO
SGN D1 SIN D2
SGR D3 TAN D4
LEN D5 CHR$ Dé
RND D7 SEGS D8
POS D? VAL DA
STR% DB ASC DC
PI DD REC DE

PAGE 103 Revision 3.0

Product 359 BASIC Interpreter 30JUN B8O

Keyword Internal Value Keyword Internal Value
MaX DF MIN EO
RPT® El (UPRC%) E2
(ETATUS) E3 (TIMES®) E4
(DAT%) ES (INTG) E&
(ALPHA) E7 NUMERIC ES
DIGIT E? UALPHA EA
SIZE EB ALL EC
USING ED BEEP EE
ERASE EF AT FO
BASE Fi (TEMPORARY) F2
(VARIABLE) F3 (RELATIVE) F4
INTERNAL F5 (SEQUENTIAL} Fé
QUTPUT F7 (UPDATE) | F8
(APPEND) Fe FIXED FA
(PERMANENT) FB TAB FC
FD VAL IDATE FE

The highest (FF) and lowest (80) values have not been
assigned. The highest (FF})} will newver be assigned a value as all
precedence testing by the parser uses the fact that it is not
assigned and it is therefore <considered an illegal wvalue.
Keywords in brackets have not actually been implemented in this
BASIC, but have been assigned values in the anticipation of a
later generations of personal computers using them. Please note
that each keyword has a hexadecimal wvalue with the most
significant bit set. This condition is what actually
differentiates the tokens from symbols.

PAGE 104 . Revision 3.0

Product 359 BASIC Interpreter ‘ 30JUN 80

Appendix B - GPL35%9 As A Debugging Aid

Experience with the TI 99/4 BASIC interpreter has shown
that, by far, the most effective way to debug new sections of
code in the interpreter is to use what is known as GPL10O on the
F70/10. GPL10O is a software emulation of the 99/4. A special 990
SCI proc, GPL35%, and an installed task were used to invoke the
emulator. It has a customized GPL interpreter as well as several
support modules which provide the interface between the emulator
and the 990 operating system.

A slightly modified assembly language (99/4 ROM) code is
link-editted in with the customized GPL interpreter and support
routines to use the 990 debugging facilities. The modifications

needed in the assembly language code are described in a later
section.

When the GPL359 emulator is invoked (with = the GPL359 SCI
command on the 990) & block of memory is allocated which is
divided up into the three remaining types of memory (CPU RAM,
VDP RAM, and GROM) in the 99/4. :

The CPU RAM 1is allocated first in the 990's memory, then
the VDP RAM and finally the GROM. The SCI GPL35%9 command prompts
for an object file which is the linked GPL object file that is
to be debugged. This GPL object file must contain the system
monitor, a patch file for the monitor (described in a later
section) and the Product 359 GPL code. '

Adssembly Language

In order to use GPL35%9, a special link file was created for
the link—-editor. This file looks like:

PAGE 105 Revision 3.0

Froduct 359 BASIC Interpreter 30JUN BO

TASK GPL359

LIBRARY . SCI?90. S$0BJUECT
INCLUDE PPC2. P359. OBJ. MAIN
INCLUDE PPC2. P35%. OBJ. CRT
INCLUDE PPC2. P35%. OBJ. DEBUG
INCLUDE PPC2. P35%9. OBJ. FLTPT
INCLUDE PPC2. P35%. OBJ. CSN
INCLUDE PPC2. P35%9. OBJ. CNS
INCLUDE PPC2. P35%. OBJ. TRINSIC
INCLUDE PPC2. P359. OBJ. BASSUP
INCLUDE PPC2. P35%. OBJ. STRING
INCLUDE PPC2. P35%. OBJ. PARSE
INCLUDE PPC2. P35%. OBJ. NUD
INCLUDE PPC2. P35%9. OBJ. CIF
INCLUDE PPC2. P35%. OBJ. FORNEXT
INCLUDE PPC2. P35%9. OBJ. XML990
INCLUDE PPC2. P35%. OBJ. SCROLL
INCLUDE PPC2. P35%. OBJ. GREAD
INCLUDE PPC2. P359. OBJ. GWRITE
INCLUDE PPCR2. P35%. OBJ. DELREP
INCLUDE PPC2. P359. OBJ. MVDN
INCLUDE PPC2. P35%. OBJ. MVUP
INCLUDE PPC2. P35%. OBJ. VEWITE
INCLUDE PPC2. P35%. OBJ. GUWITE
INCLUDE PPC2. P35%9. OBJ. GETPUT
INCLUDE PPC2. P35%9. OBJ. SUBPROG
INCLUDE PPC2. P2S%. DBJ. SCAN
INCLUDE PPC2. P35%9. OBJ. CRUNCH
INCLUDE PPC2. P259. OBJ. CPT
INCLUDE PPC2. P359. OBJ. GETNB
INCLUDE PPC2. P35%9. OBJ. SPEED
SEARCH

INCLUDE PPC2. P359. OBJ. EMULATOR
INCLUDE PPC2. P35%9. OBJ. EQUATE
END

MAIN, CRT, DEBUG, DATA, EMULATOR and the LIBRARY and SEARCH
are rvequired modules to get the special interpreter and to get
the debug and 990 interface code.

In order for assembly language code which accesses the
GROM: VDP RAM or expansion RAM to run properly, conditional
assemblies are used. This is due to the differences in accessing
the 9907s continuous memory and GROM, VDP and expansion RAM on
the 99/4.

Accessing GROM

The following is a typical example of how the GROM is
accessed from assembly language:

PAGE 1064 Revision 3.0

Product 359 BASIC Interpreter 30JUN 80

MOVB @ADDR, @GRMWA(R13) Write 1st byte of address
MOVB @ADDR+1, @GRMWA(R13) Write 2nd byte of address
NOP Waste some time

MOVB #R13, @BYTE Read a byte

The same access to the GROM is done in GPL35%9 by:

MOV @ADDR,R14 Use R14 for common purpose
Al R14, GROM GROM offset in memory
MOVB #R14+, @BYTE READ a byte

GRMWA and GROM need to be *REFed’ in the assemblies, as
they are DEFed in the emulator.

Accessing YDP RAM

Accessing the VDP is more difficult than accessing the GROM
in the real machine due to the need to write out the least
significant byte of the address before the most 51gn1F1cant byte
of the address. Also, since the VDP can be both read from and
written to another step must be added. The following is a
typical example of reading from the VDP RAM:

SWPB R1 Address is in R1

MOVB R1, #R1S5 Write 2nd byte of address
SWPB R1 Swap back

MOVB R1, #R15 Write 1st byte of address
NOP Waste some time

MOVEB @VDPRD, R2 Read the byte into R2

The same code written to read from GPL35%9's "VDP" area is
written as

MOV R1i,Ri4 Use R14 for the read
Al R14, VRAM Add offset into memory
MOVB #R14+, R2 Read the byte

Once again, VDPRD and VRAM must be DEFed in the emulator
and must be REFed by the module using them.

In order to write to the VDP RAM a similar procedure to
reading must be wused. The following example demonstrates the
reverse of the above example. ,

SWPB R1 Address in R1

MOVB R1, #R15 Write 2nd byte of address
SWPE R1 Swap to right order

ORI R1,WRVDP Or in the write enable
MOVB R1, #R15 Write 1st byte of address
NOP Waste some time

MOVB R2, @VDPWD Write the data byte

PAGE 107 Revision 3.0

Product 359 BASIC Interpreﬁer 30JUN 80

The same example done for GPL359:

MOV R1,R14 Use R14 for the read
Al R14, VRAM Add offset into memary
MOVB R2, #R14+ Write the data byte

Once again, WRVDP, VDPWD and VRAM must be REFed.

Accessing Expansion RAM

Since the expansion RAM is configured with a CPU=-type
interface accessing it on the 990 is essentially identical to
accessing it on the 99/4 except that the simulated expansion
RAM’s memory offset must be added to the actual address in order
to access the correct location in memory. The following example

demonstrates how the expansion RAM is accessed on the 99/4 and
on the 9%90.

MOV @ADDR,R1 Fetch the address
MOVEB #R1,R2 Read the byte

is used to access the expansion RAM on the 99/4 and

MOV @ADDR, R1 Fetch the address .
Al R1, GRAM Add expansion RAM offset
MOVB #R1,R2 Read the byte

is used to accesé the simulated expansion RAM on the 9%90.

GPL. Code

The only thing that must be done to correctly execute GPL
code on GPL359 is to include a file called MONPATCH in with the
link of the GPL code. MONPATCH patches out some bytes of the
monitor which the emulator considers to be illegal instructions
because of some error checking is done. The bytes that must be
patched out all deal with trying to write to the GPL interpreter
workspace registers which GPL359 does not allow to be done from
GPL code. These attempts to write to the workspace registers
occur when the monitor is scanning the GROM area for GROM
headers and when the 1linking routine, CPL, and the return
routine, RPL, attempt to save and restore the interpreter’s R13.
Whenever the monitor is modified the patch file must also be
modified to match the addresses of where the patched
instructions are located. The locations of the patches may be
found by looking at the source of the monitor and monpatch.

It should also be noted that none of the graphics available
on the 99/4 are available on the 990, but, any characters put on

PAGE 108 Revision 3.0

Product 359 BASIC Interpreter ' 30JUN 80

the screen of the 99/4 will appear on the 990‘s CRT in some form

or another. A 99/4 console or simulator is necessary to display
the correct characters on the screen.

PAGE 109 Revigion 3.0

Product 359 BASIC Interpreter 30JUN 80

- Appendix C - Special GPL XMLs

In order to improve the speed of the interpreter, the maost
frequently wused code has been written in 9900-code. This has
necessitated the use of the GPL XML instruction to ‘"call" a
7900-code subroutine. This interpreter utilizes two XML tables,
yielding a total of 32 separate XMLs for speed-up and general

usage purposes. The two XML tables, numbers 7 and 8, are
contained in the XML35% module of the assembly language code and
are located at locations 26010 and 26030, respectively, as set

by the addresses defined within the 99/4 system.

Figure APP C.1 shows the contents of the first XML table.

Table 7 (260100

»70 - COMPCT - string garbage collector

»>71 - GETSTR - system string allocator

»>72 - MEMCHK - symbol table % PAB memory allocator
>73 - CNS - Convert Number to String

»74 ~ PARSE - begin a parse

>73 — CONT - continue a parse

»76 — EXEC - execute a BASIC program or line
>77 - VPUSH - push 8-byte entry on the stack
>78 - VPOP - pop an 8-byte entry off the stack
»79 - PGMCHR - +fetch the next program character
>74 — SYM - +Find a symbol in the symbal table
»7B - SMB - evaluate symbol subscripts

»7C — ASSGNV - assign a value to a symbol

»7D - FBSYMB - search symbol table (for prescan)
>7E -~ SPEED - General speed-up Toutines

»27F - CRUNCH - crunch an input line

Figure APP C. 1 '
The parse XML is special in that it must be followed by a data
byte indicating the level to parse to. Therefore, a call to
parse has the form of:

XML PARSE Parse a valvue
DATA RPAR$ Stop on ‘)’ or higher

The speed XML is also special in that it is an XML that accesses
three different routines and must be followed by at least one
data byte to select the proper routine. The three routines are:
1) SYNCHK which checks for a syntactically-required token value
and returns the program character following the required token
or issues an error; 2) PARCOM which parses up to a comma, checks
for a required comma and returns the program character following
the comma else issues an error; 3) RANGE which converts a
floating point number in the FAC into an integer and ¢then
verifies that it is within a certain range of values. These
values ar specified by three data bytes following the XML and
the RANGE selector. The form of the three XML routines accessed
by the SPEED XML are:

PAGE 110 Revision 3.0

Y

gl

Product 359 BASIC Interpreter 30JUN 80

XML 8

PEED

DATA SYNCHK
DATA LPAR%$

XML S
DATA P

XML S
DATA R
DATA 1

PEED
ARCOM

PEED
ANGE
+ #300

Select synchk (SYNCHK equated to 0O)
A ‘(' is required

Select parcom (PARCOM equated to 1)

Select range (RANGE equated to 2)
Low value is 1, high value is 300

The CRUNCH XML also requires a selector field following the
XML instruction to select the type of crunch being requested.
wo possible types of crunch, a normal input-line

There are ¢
crunch of B
input-stateme
keyboard or £

ASIC
nt of
Tom a

statements and a special crunch for the

BASIC to crunch data entered from the

display—-type file. The CRUNCH XML call,

therefore, has the two following forms:

XML C
DATA O

XML C
DATA 1

RUNCH

RUNCH

Crunch a BASIC source line
Select normal crunch mode

Crunch the input data
Select data—-crunch mode

Figure APP C.2 shows the contents of the second XML table.

Table 8 (246030}

»>BO -
>81 -
»82 -
»>83 -
»>84 -
>85 -
>86 ~
>87 -
>88 -
>89 -
>BA -
>8B -
>8C -
>8D -
>BE -
»7F -

As with

CIF
CONTIN
RTNB
SCROLL
10
GREAD
GWRITE
DELREP
MVDN
MVUP
VGWITE
GVWITE

GREAD1

GWITE1L
GDTECT
SCAN

Convert Integer to Floating

- continue after breakpoint

- return to 929200-code after call to GPL

- scroll the screen ’

- general I/0 speed—up routines

- read from expansion RAM to CPU RAM

- write from CPU RAM to expansion RAM

—- delete line text from program image

- move from low to high address in VDP/ERAM
- move from high to low address in ERAM

- move from VDP to ERAM

- move from ERAM to VDP

- rtead from expansion RAM to CPU RAM

-~ read from CPU RAM to expansion RAM

- search for ERAM and enable page O at 7000
prescan a program or line

}

Figure APP C. 2

the XMLs in table 1 described above there are two
XMLs in table 2 which have special calling sequences.

The I/0 xml is used to access four different routines and
the calls to IO have the following forms:

PAGE 111 Revision 3.0

Product 359 BASIC Interpretér 30JUN B0

XML IO

DATA LLIST Line list for list (LLIST equated to O)

XML IO

DATA FILSPC Fill record with fillers (FILSPC equated to 1)
XML IO ‘
DATA CSTRIN Copy string onto screen (CSTRIN equated to 2)
XML IO :

DATA CLRGRM Clear ERAM (CLRGRM equated to 3)

DATA FAC Address of 2-byte # of bytes to clear

DATA FAC2 Address of address to begin clearing

. The scan XML is wused to speed up the prescanning of a
program by having the main loop of +the static scanner in
7?00~-code. There is a selector associated with the XML to select
the condition upon which the routine is being called. The XML is
called with the following forms:

XML SCAN Initial call to scan a program

DATA O

XML SCAN Return to scan after call to GPL to handle
DATA 1 DIM, SUB, enter, etc.

XML SCaN Initial call to scan an imperative line
DATA 2

PAGE 112 Revigion 3.0

